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A fundamental property of speech perception is that listeners map 
continuously variable acoustic speech signals onto discrete phonetic 
sound categories1–3. This ‘phonetic’ mode of listening4 lays the phono
logical foundation for speaking new words5 and mapping speech into 
writing. In categorical speech perception, a continuum that gradually 
morphs from one syllable to another is transformed into perceptually 
discrete categories whose members closely resemble each other6,7.

A number of studies support the notion that the posterior superior 
temporal gyrus (pSTG) in Wernicke’s area is important for higher 
order auditory processing of speech sounds8–13. Current noninvasive 
neurophysiologic methodologies (for example, functional magnetic 
resonance imaging (fMRI), magnetoencephalography and positron 
emission tomography) have provided important insights into speech 
localization. However, because of limitations in simultaneous spatial 
and temporal resolution, these approaches have been unable to offer a 
mechanistic account for speech representation in humans. As a result, 
fundamental questions remain unresolved regarding the manner in 
which the functional organization of pSTG supports the perceptual 
features of aural speech. In particular, do pSTG neural activity pat
terns correspond to precise spectrotemporal changes in the external 
acoustic signal (that is, veridical representation) or to a higher order 
linguistic extraction of phonetic categories? Furthermore, what neural 
response features (for example, place, time and amplitude) are critical 
for representing the discriminability of different phonemes as funda
mental contrastive linguistic units?

To answer these questions, we recorded cortical local field poten
tials from the pSTG in four human subjects undergoing awake crani
otomy with speech mapping as part of their epilepsy14 or brain tumor 

surgery15. Although limited to rare clinical settings, highdensity 
electrocorticographic recordings offer the advantage of simultane
ous high spatial (millimeters) with realtime temporal (millisecond) 
resolution, in addition to excellent signaltonoise properties. We 
found that listening to speech sounds that differed by small acous
tic steps evoked highly distributed cortical activation in the pSTG. 
Multivariate analyses revealed, however, that the neural response 
patterns were strongly organized along phonetic categories and 
did not demonstrate sensitivity for gradual acoustic variation. We 
found a high level of concordance between neuro and psychometric  
functions, suggesting that pSTG encoding represents higher order 
invariant representation for speech sounds.

RESULTS
We employed a classic procedure first described in 1957 (ref. 6) to 
investigate the perceptual and neural organization of stop conso
nant phonemes. Consonantvowel syllables were synthesized with 
14 equal and parametric changes in the starting frequency of the F2 
transition (second vocal tract resonance) that ranged perceptually 
across three initial consonants /ba/ to /da/ to /ga/ (Fig. 1a). When 
subjects ascribed one of the three phoneme labels to the stimuli, the 
psychophysical identification functions demonstrated clear percep
tual category borders between /ba/ and /da/ percepts near stimuli 
4 and 5 and between /da/ and /ga/ percepts near stimuli 8 and 9 
(Fig. 1b). In a psychophysical twostep discrimination task, accuracy 
was highest for those stimulus pairs that straddled the identifica
tion boundary (Fig. 1c). The steep labeling identification functions 
and peaked discrimination functions shown here, with the peak at 
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Speech perception requires the rapid and effortless extraction of meaningful phonetic information from a highly variable acoustic 
signal. A powerful example of this phenomenon is categorical speech perception, in which a continuum of acoustically varying 
sounds is transformed into perceptually distinct phoneme categories. We found that the neural representation of speech sounds 
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acoustic-to–higher order phonetic level encoding of speech sounds in human language receptive cortex.
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the phoneme discrimination boundary corresponding to the 50% 
point of the labeling curve, are the defining psychophysical proper
ties of categorical perception (Fig. 1b,c). Thus, one does not hear 
steplike changes corresponding to the changes in the acoustic signal, 
but instead perceives essentially quantal jumps from one perceptual 
category to another.

While subjects were fully awake in the operating room, we placed 
a customized highdensity 64electrode microarray (4 mm spacing) 
using stereotactic guidance on the surface of the posterior temporal 
cortex (defined here as cortical area caudal to the point where 
the central sulcus intersects the Sylvian fissure; Fig. 1d). Subjects 
 listened passively to a randomized sequence of stimulus tokens.  
The averaged evoked potential peaked at approximately 110 ms after the 
stimulus onset (Fig. 1e). The spatial topography of responses to /ba/, 
/da/ and /ga/ tokens revealed highly distributed responses across the  
pSTG (Fig. 1f).

As the functional organization of the pSTG exhibits a distributed 
representation for speech sounds, in contrast with the welldefined 
gradient of frequency selectivity in the primary auditory cortex16, 
we used an informationbased strategy to determine how distri
buted neural population activity patterns might encode speech. 
The specific measure that we used was the degree to which a multi
variate pattern classifier (L1 norm regularized logistic regression17) 
was able to distinguish singletrial response patterns of the evoked 
cortical potentials.

In linguistics, confusion matrices are commonly used to explore 
the perceptual organization and distinctiveness of speech sounds18. 
We assembled the performance results from pattern classification into 
neural confusion matrices to organize the neural response dissimilar
ity across each pairwise stimulus comparison (Fig. 2). The confusion 
matrices were calculated for each subject and then averaged for the 
group using data binned in 40ms time intervals and advanced by 10ms  
steps. Classification performance varied between stimulus pairs, with 
peak discrimination at 78–79% for each subject.

Two things were apparent from the averaged matrices. First, when 
analyzed over successive time epochs, the overall neural pattern dis
similarity gradually increased (Fig. 2a and Supplementary Results) 
and peaked transiently around 110 ms. Thus, the greatest overall neu
ral pattern dissimilarity occurred at the peak response of physiologic 
evoked potentials, as opposed to early or longerlatency responses. 
Second, although the overall discriminability among responses was 
highest during that interval, specific comparisons in the confusion 
matrices also showed poor discriminability, suggesting structured 
organization of response patterns. For example, neural responses to 
stimuli 1–4 were indiscriminable, whereas those responses to stimuli 
7 and 11 were highly discriminable (Fig. 2b).

To examine the similarity relationships across all stimuli, we applied 
unsupervised multidimensional scaling (MDS) to the confusion matrix 
to construct a geometric space in which the Euclidean distances between 
different stimuli markers correspond to the similarity of their neural 
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Figure 1 Psychophysics of categorical speech perception and speech-evoked responses during intraoperative human cortical recordings. (a) Wide-band 
spectrograms of the stimulus token continuum, synthesized with equal parametric changes in the F2 starting frequency (from 800–2,100 Hz). Top, 
full spectrogram of a single token with an 800-Hz starting frequency (stimulus 1, duration = 250 ms). Bottom, first 50 ms for each of the 14 stimulus 
tokens. (b) Psychometric identification function with percentage reporting /ba/, /da/ or /ga/. (c) Psychometric discrimination function (two step). The 
percentages of responses judged as different versus same are shown. The category boundaries located at peak discrimination are at stimuli 4 and 5 and 
at 9 and 10. (d) Three-dimensional surface reconstruction of representative brain magnetic resonance imaging with superimposed electrode positions 
over pSTG. (e) Grand average rooted mean square (RMS) evoked potentials recorded over pSTG for sound stimuli reliably categorized as /ba/ (tokens 
1–4), /da/ (tokens 6–9) and /ga/ (tokens 10–14). The average evoked potentials (RMS, solid line) and standard errors of evoked potential amplitudes 
(shaded) are shown. Potentials peaked at approximately 110 ms after stimulus onset. (f) Topographic plots of evoked potentials at 110 ms for each 
prototype sound stimulus revealed distributed cortical activation pattern, with some sharply localized differences between stimuli.
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responses19. Stimuli placed close together elicited similar neural response 
patterns, whereas stimuli positioned far apart elicited dissimilar response 
patterns. Visual inspection of the MDS plots suggested that, during 
maximal neural response discriminability (110–150 ms), neuronal  

responses to different stimuli organized into three discrete groupings 
(Fig. 2c, see Supplementary Fig. 1 for MDS residual stress values).

To confirm these results, we used another method, unsupervised 
Kmeans clustering analysis, to examine the independent grouping 

of neural response patterns. This method 
is wellsuited for exploring categorical data 
organization because it extracts a clustering 
of the data that minimizes intracluster dis
tances and maximizes intercluster differences. 
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Figure 2 Categorical organization of neural 
response patterns to a speech-stimulus 
continuum. (a) Rapid and transient 
neural representation for speech stimulus 
discriminability. Time series of the total 
normalized neural pattern dissimilarity  
derived from classifier performance 
aggregated across all pair-wise stimulus 
comparisons are shown. Peak dissimilarity 
occurred at the same time as peak of 
evoked potential magnitude in Figure 1e. 
(b) Structured neural dissimilarity. Shown 
are neural confusion matrices for three time 
intervals: 0–40 ms (1), 110–150 ms (2) 
and 180–220 ms (3) (group average data). 
Color bar scaling corresponds to the classifier 
performance for each pair-wise stimulus 
comparison shown in individual matrix pixels. 
In the 110–150-ms interval, responses to 
some stimulus pairs, for example, 1 versus 4,  
8 versus 5 or 10 versus 13, were nearly 
indiscriminable, whereas other stimulus pairs 
elicited responses that were much easier to 
discriminate, such as 7 versus 11 or 3 versus 9. 
(c) Relational organization of neural pattern 
response dissimilarity using MDS. Neural 
pattern dissimilarity was proportional to the 
Euclidean distance (that is, similar response 
patterns are grouped closely together, whereas 
dissimilar patterns are positioned far apart). K-means clustering results for group membership are denoted by stimulus coloring (red = /ba/ 
sounds, green = /da/ sounds, blue = /ga/ sounds, k = 3). Zero cluster errors were found at time interval 110–150 ms (that is, same clustering as 
in psychophysical results), six errors at 0–40 ms and five errors at 180–220 ms.
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Figure 3 Correlation of neurometric and 
psychometric category boundaries. Peak 
encoding at 110–150 ms. (a) Left, comparison 
of neuronal-derived (dark) and psychophysical-
derived (light/dashed) identification functions. 
Neurometric identification functions were 
determined using the MDS distance between 
each stimulus position and the three 
cluster means. Middle, correlation between 
neurometric and psychometric identification 
functions (Pearson’s correlation, 0.92 for /ba/, 
0.98 for /da/ and 0.92 for the /ga/ category; 
dotted line, threshold of corrected P value at 
0.05). Right, comparison of neural (red) and 
psychophysical (black/dashed) discrimination 
functions. The neurometric discrimination 
functions were derived from the distance of the 
stimulus responses in MDS space. At 110 ms, 
both the position of the maxima and the general 
shape of the neurometric function correlated 
well with the psychometric function (r = 0.66,  
P < 0.05). Early (0–40 ms, b) and late  
(180–220 ms, c) epoch field potentials 
indicated poor correlation between neural  
and psychophysical results (insets).
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The neural responses were organized into three discrete and independ
ent clusters, representing the /ba/, /da/ and /ga/ syllables (Fig. 2c).  
No errors in cluster membership were found at the peak of discrimi
nability (110 and 120 ms interval start). The neuronal stimulus  
responses clustered in exactly the same way as we observed in per
ception (/ba/ 1–4, /da/ 5–9 and /ga/ 10–13), whereas earlier and later 
epochs yielded errorprone cluster estimates (see Supplementary Fig. 2  
for entire cluster error time series). Notably, the separate organization 
of response clusters matched the robust perception that /ba/, /da/ 
and /ga/ are perceived as independent and unique phonetic entities, 
rather than speech sounds occurring along a linear acoustic or even 
phonetic continuum.

To evaluate how well the neural pattern correlated to the psycho
physical behavior, we plotted neurometric identification functions for 
each phonetic category using the normalized distance in MDS space 
between each stimulus position and the three cluster means. This 
revealed a similar appearance to the psychometric identification func
tions, with steep boundaries occurring between phoneme categories 
(Pearson’s correlation, r > 0.9 for each function at 110ms intervals 
start, P < 0.05; Fig. 3, and Supplementary Figs. 2 and 3 for entire 
clustererror time series and combined MDS and Kmeans solutions, 
respectively, and Supplementary Fig. 4). A neurometric discrimina
tion function was also derived from distances between individual 
stimulus positions in MDS space. This also achieved good correla
tion with the psychometric functions for discrimination (Pearson’s 
correlation, r = 0.66 at 110ms intervals start, P < 0.05). Notably, we 
observed good correspondence between the two neurometric func
tions; the peaks of the discrimination occurred for the same stimuli 
as the steepest parts of the identification, thus fulfilling the criterion 
for neural categorical organization. This organized representation was 
transient, spanning the neuronal response from 110–160 ms.

To determine the spatial organization of phonetic representa
tion, we next identified the cortical sites contributing to stimulus 
discriminability by extracting the most informative electrodes as 
determined by the classifier. Although the evoked potentials showed 

overlapping representation for speech sounds, discrete differences 
in cortical activations (<4mm) were observed to underlie phonemic 
discrimination. We plotted these spatially contrastive differences 
between various categories (Fig. 4). The small overlap between 
these loci suggests that phonetic encoding is not simply a scaling 
of the response amplitudes in the same neuronal population.

DISCUSSION
A key element of speech perception is the categorization of acousti
cally variable inputs into a discrete phonetic code. Understanding 
the neural basis of this process is a central question in the study 
of the human capacity for language20. We found that the pSTG is 
robustly organized according to its sensitivity to phonetic objects 
rather than to the linear changes of spectrotemporal acoustic cues. 
For the stop consonantvowel sounds that we used, we observed a 
complex distributed pattern of evoked neural activity recorded by a 
cortical microarray. The discriminability of these response patterns, 
however, relies on transient temporal and local, nonoverlapping  
spatial neural representations.

Without a priori knowledge on functional organization of the 
pSTG, the multivariate pattern classifier and MDS are useful meth
ods for examining the critical acoustic features underlying stimulus 
discriminability. The first MDS dimension correlated linearly with the 
F2 onset frequency, which, in natural speech, cues the feature of place 
of articulation across /b/ to /d/ to /g/ (that is, location of constriction 
in the vocal tract from lips to teeth to soft palate). The second MDS 
dimension correlated with the size of F2 transition (absolute value 
of the difference between the onset F2 frequency and the vowel F2 
frequency), which, in these stimuli, cues the linguistic feature (coro
nal; that is, not produced by tongue tip position), grouping /b/ and 
/g/ together. Critically, the grouping patterns observed did not arise 
from one dimension alone, but instead from the specific combina
tion of two different linguistically relevant feature dimensions: the 
F2 onset frequency and the F2 formant transition. Thus, these results 
support the notion that phonetic encoding in the pSTG appears to be 
facilitated by feature detectors that integrate specific spectrotemporal 
cues relevant to speech.

The pSTG appears to have a specialized role in phonetic processing 
because of its specific responsiveness to speech over other sounds21–25 
and its direct anatomic connections to cortical areas supporting lexi
cal and semantic extraction26–28. A recent fMRI study found activa
tion of the left pSTG increased overall after engaging in categorical 
perception tasks on phonetic and nonphonetic sinewave syllable 
tokens29. Our results extend these findings by providing new infor
mation about the timing and topography mechanisms intrinsic to 
stimulus encoding in the pSTG.

Although our microarray recordings focused on auditory process
ing in the pSTG, fMRI has implicated other areas during active pho
netic discrimination. Selective amplification of left supramarginal 
gyrus activity has been observed in response to the contrastive fea
tures of stimulus pairs spanning a /ba//da/ category boundary30. 
Invariant neural activation of the left inferior frontal gyrus was found 
for sounds morphed along a different acoustic continuum for voice 
onset time31. These findings suggest that there are several other corti
cal areas that are likely involved in the behavioral processes of pho
netic detection, working memory and/or decision making.

Our results indicate that the pSTG implements rapid categorical 
phonetic analysis, integrating spectrotemporal features to create 
invariant higher order linguistic structure32. This pattern is con
sistent with the pragmatic demands of spoken English; there is a 
meaning distinction between /b/ and /d/ (for example, ‘bad’ versus 
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‘dad’), whereas the distinction between the variations of /b/ carries 
no meaning. Our results provide a mechanistic account whereby the 
pSTG functions as a critical locus for phonological processing in the 
neural representation of human language.

METhODS
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.

AcknowledgmentS
We are grateful to the four individuals who participated in this experiment 
and to A. Flinker for help with data acquisition. This research was supported 
by US National Institutes of Health grants NS21135 (R.T.K.), PO4813 (R.T.K.), 
F32NS061552 (E.F.C.), K99NS065120 (E.F.C.), FKZMK482009/003 (J.W.R.) and 
RI1511/13 (J.W.R.).

AUtHoR contRIBUtIonS
E.F.C. designed the experiments, collected the data and wrote the manuscript. 
E.F.C. and J.W.R. analyzed the data, evaluated results and edited the manuscript. 
J.W.R., N.M.B. and M.S.B. helped with data collection. K.J. and R.T.K. reviewed 
the manuscript.

comPetIng FInAncIAl InteReStS
The authors declare no competing financial interests. 

Published online at http://www.nature.com/natureneuroscience/.  
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions/.

1. Perkell, J. & Klatt, D.H. Invariance and Variability in Speech Processes (Lawrence 
Erlbaum Associates, Hillsdale, New Jersey, 1986).

2. Liberman, A.M., Cooper, F.S., Shankweiler, D.P. & Studdert-Kennedy, M. Perception 
of the speech code. Psychol. Rev. 74, 431–461 (1967).

3. Diehl, R.L., Lotto, A.J. & Holt, L.L. Speech perception. Annu. Rev. Psychol. 55, 
149–179 (2004).

4. Liberman, A.M. & Mattingly, I.G. A specialization for speech perception. Science 
243, 489–494 (1989).

5. Vihman, M. Phonological Development: The Origins of Language in the Child (Wiley-
Blackwell, Cambridge, 1996).

6. Liberman, A.M., Harris, K.S., Hoffman, H.S. & Griffith, B.C. The discrimination of 
speech sounds within and across phoneme boundaries. J. Exp. Psychol. 54,  
358–368 (1957).

7. Harnad, S.R. Categorical Perception: The Groundwork of Cognition (Cambridge 
University Press, Cambridge, 1987).

8. Edwards, E. et al. Spatiotemporal imaging of cortical activation during verb 
generation and picture naming. Neuroimage 50, 291–301 (2010).

9. Creutzfeldt, O., Ojemann, G. & Lettich, E. Neuronal activity in the human lateral 
temporal lobe. I. Responses to speech. Exp. Brain Res. 77, 451–475 (1989).

10. Boatman, D., Lesser, R.P. & Gordon, B. Auditory speech processing in the left 
temporal lobe: an electrical interference study. Brain Lang. 51, 269–290 
(1995).

11. Liebenthal, E., Binder, J.R., Spitzer, S.M., Possing, E.T. & Medler, D.A. Neural 
substrates of phonemic perception. Cereb. Cortex 15, 1621–1631 (2005).

12. Crone, N.E., Boatman, D., Gordon, B. & Hao, L. Induced electrocorticographic 
gamma activity during auditory perception. Brazier Award-winning article, 2001. 
Clin. Neurophysiol. 112, 565–582 (2001).

13. Howard, M.A. et al. Auditory cortex on the human posterior superior temporal gyrus. 
J. Comp. Neurol. 416, 79–92 (2000).

14. Penfield, W. & Jasper, H. Epilepsy and the Functional Anatomy of the Human Brain 
(LIttle, Brown and Company, Boston, 1954).

15. Haglund, M.M., Berger, M.S., Shamseldin, M., Lettich, E. & Ojemann, G.A. Cortical 
localization of temporal lobe language sites in patients with gliomas. Neurosurgery 
34, 567–576 discussion 576 (1994).

16. Merzenich, M.M. & Brugge, J.F. Representation of the cochlear partition of the 
superior temporal plane of the macaque monkey. Brain Res. 50, 275–296 
(1973).

17. Koh, K., Kim, S.J. & Boyd, S. An interior-point method for large-scale l1-regularized 
least squares. J. Mach. Learn. Res. 8, 1519–1555 (2007).

18. Miller, G.A. & Nicely, P.E. An analysis of perceptual confusions among some English 
consonants. J. Acoust. Soc. Am. 27, 338–352 (1955).

19. Iverson, P. & Kuhl, P.K. Perceptual magnet and phoneme boundary effects in speech 
perception: do they arise from a common mechanism? Percept. Psychophys. 62, 
874–886 (2000).

20. Liberman, A.M. & Whalen, D.H. On the relation of speech to language. Trends Cogn. 
Sci. 4, 187–196 (2000).

21. Binder, J.R. et al. Human temporal lobe activation by speech and nonspeech sounds. 
Cereb. Cortex 10, 512–528 (2000).

22. Benson, R.R., Richardson, M., Whalen, D.H. & Lai, S. Phonetic processing areas 
revealed by sinewave speech and acoustically similar non-speech. Neuroimage 31, 
342–353 (2006).

23. Uppenkamp, S., Johnsrude, I.S., Norris, D., Marslen-Wilson, W. & Patterson, R.D. 
Locating the initial stages of speech-sound processing in human temporal cortex. 
Neuroimage 31, 1284–1296 (2006).

24. Vouloumanos, A., Kiehl, K.A., Werker, J.F. & Liddle, P.F. Detection of sounds in the 
auditory stream: event-related fMRI evidence for differential activation to speech 
and nonspeech. J. Cogn. Neurosci. 13, 994–1005 (2001).

25. Jäncke, L., Wustenberg, T., Scheich, H. & Heinze, H.J. Phonetic perception and 
the temporal cortex. Neuroimage 15, 733–746 (2002).

26. Scott, S.K. & Wise, R.J. The functional neuroanatomy of prelexical processing in 
speech perception. Cognition 92, 13–45 (2004).

27. Hickok, G. & Poeppel, D. Dorsal and ventral streams: a framework for understanding 
aspects of the functional anatomy of language. Cognition 92, 67–99 (2004).

28. Whalen, D.H. et al. Differentiation of speech and nonspeech processing within 
primary auditory cortex. J. Acoust. Soc. Am. 119, 575–581 (2006).

29. Desai, R., Liebenthal, E., Waldron, E. & Binder, J.R. Left posterior temporal regions 
are sensitive to auditory categorization. J. Cogn. Neurosci. 20, 1174–1188 
(2008).

30. Raizada, R.D. & Poldrack, R.A. Selective amplification of stimulus differences 
during categorical processing of speech. Neuron 56, 726–740 (2007).

31. Blumstein, S.E., Myers, E.B. & Rissman, J. The perception of voice onset time: an 
fMRI investigation of phonetic category structure. J. Cogn. Neurosci. 17,  
1353–1366 (2005).

32. Blumstein, S.E. & Stevens, K.N. Perceptual invariance and onset spectra for stop 
consonants in different vowel environments. J. Acoust. Soc. Am. 67, 648–662 
(1980).

©
 2

01
0 

N
at

u
re

 A
m

er
ic

a,
 In

c.
  A

ll 
ri

g
h

ts
 r

es
er

ve
d

.

http://www.nature.com/natureneuroscience/


nature neurOSCIenCedoi:10.1038/nn.2641

ONLINE METhODS
The experimental protocol was approved by the University of California, San 
Francisco and Berkeley institutional review boards and Committees on Human 
Research, and the subjects gave their informed consent before testing.

Stimulus synthesis and behavioral testing. Speech stimuli were synthesized 
using the Klatt synthesizer. The critical stimulus variation was created by stepwise 
changes in the F2 onset frequency over 14 equal steps6 (100Hz step increases 
ranging from 800–2,100 Hz) spanning the perceptual phonetic continuum from 
/ba/ to /da/ to /ga/.

Before surgery, subjects performed a twostep AX (same versus different) 
discrimination task and then an identification task in which they labeled the 
stimulus as either /ba/, /da/ or /ga/. Subjects then underwent awake craniotomy 
with speech mapping by electrocortical stimulation as part of their epilepsy or 
brain tumor surgery. The stimulus tokens were aurally presented in a pseudoran
dom order via freefield loudspeakers at approximately 80 dB. As a result of time 
constraints in the operating room, each stimulus token was repeated 25 times, 
for a total of 350 total trials per subject.

Subjects and intraoperative testing. The four subjects in this study underwent 
awake craniotomy as part of their epilepsy or brain tumor surgery. They gave 
their written informed consent before the day of surgery. Supplementary table 1  
shows the patient characteristics included in this study. All subjects underwent 
neuropsychological language testing and were found to be normal. The Boston 
naming test and verbal fluency test were used for preoperative language testing. 
The Wada test was used for language dominance assessment.

data acquisition and preprocessing. The electrocorticogram was recorded using 
a customized 64channel subdural cortical electrode microarray, with centerto
center distance of 4 mm. The electrode array was placed on the lateral aspect of 
the posterior superior temporal gyrus using stereotactic intraoperative neuron
avigation. The signal was recorded with a TDT amplifier optically connected to 
a digital signal processor (TuckerDavis Technologies).

The electrocorticogram data were digitally lowpass filtered at 50 Hz and 
resampled at 508.6 Hz. Each channel time series was visually and quantitatively 
inspected for artifacts or excessive noise. The data was then segmented with a 
100ms stimulus prestimulus baseline and a 400ms poststimulus interval. The 
common mode signal was estimated using principal component analysis with 
channels as repetitions and was removed from each channel time series using 
vector projection.

estimation of neuronal response dissimilarity. We estimated singletrial 
pairwise dissimilarity of the neuronal response patterns evoked by different 
stimulus tokens using an L1norm regularized logistic regression classifier17 
applied to the time series data in a leaveonetrialout cross validation proce
dure. Dissimilarities were estimated for 40mslong data windows, advanced 
every 10 ms. To increase the ratio of the number of examples to the number of 
features, we combined responses to adjacent stimuli (for example, 1 and 2, 2 and 
3, etc.), doubling the number of trials used per dissimilarity estimate. Note that 
labels in the figures list only the first stimulus in these combined sets of trials. 

Both feature selection and classifier training were performed in the crossvalida
tion loop. Feature selection was carried out by calculating univariate effect sizes 
for each data sample and discarding samples with small effects from classifier 
training. L1norm logistic regression is well suited for classification problems 
involving highdimensional feature spaces and relatively few examples for train
ing because it provides good generalization performance even when relatively 
few training data are available.

Generalization rate expressed as percent correct classifications measured the 
dissimilarity of the neuronal responses of a stimulus pair. The single trial classifi
cation measures of pairwise neural response dissimilarity were used to construct 
a confusion matrix for each time interval.

derivation of neuronal response classes, neuronal identification and discrimi-
nation functions. MDS was applied to the confusion matrices averaged over all 
subjects to represent neural response patterns to different phoneme stimuli in 
a new space in which the distance between neuronal responses represents their 
relative similarity (and dissimilarity)33. The objective in MDS is to minimize 
the reconstruction error measured by Kruskall Stress34. The MDS embedding 
was calculated in three dimensions, given a priori considerations of how many 
dimensions would be maximally required. The simultaneous representation of 
all neuronal responses in on common similarity space allowed us to use Kmeans 
cluster analysis35 to test when, if at all, neuronal responses group in a way that 
parallels perceptual grouping obtained psychophysically. Kmeans clustering 
implements the definition of categorical representation of stimulus responses7, 
hence the obvious choice for k, the number of expected clusters, was three, the 
number of perceived phonemes.

To derive the three neuronal identification functions, we calculated three dis
tance functions in MDS similarity space, one between each of the three cluster 
prototypes and all neuronal responses. These functions can be directly com
pared to the psychophysical identification functions using a Pearson’s correlation 
analysis. The psychophysical discrimination functions were approximated by 
calculating the distances of the neuronal responses between consecutive pairs of 
stimuli in the MDSrepresentation.

Reconstruction of spatial informative patterns. The trained classifier’s weight 
vector quantifies the amount of information each feature provides for classifica
tion. Highly informative features receive higher weights and features providing 
little or no information receive low or zero weights. Features with zero entries in 
the weight vector do not contribute to the classification results.

The feature weights represent averages over cross validation results and sam
ples per electrode in the analysis interval. The average feature weights represent 
an estimate of how informative a local neuronal population (per electrode) was 
judged by the classifier.

33. Iverson, P. & Kuhl, P.K. Mapping the perceptual magnet effect for speech using 
signal detection theory and multidimensional scaling. J. Acoust. Soc. Am. 97, 
553–562 (1995).

34. Kruskal, J.B. & Wish, M. Multidimensional Scaling (Sage Publications, Newbury 
Park, California, 1978).

35. Shepard, R.N. Multidimensional scaling, tree-fitting and clustering. Science 210, 
390–398 (1980).
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