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ABSTRACT 18 

 19 

In speech, listeners extract continuously-varying spectrotemporal cues from the acoustic signal to 20 

perceive discrete phonetic categories. Spectral cues are spatially encoded in the amplitude of 21 

responses in phonetically-tuned neural populations in auditory cortex. It remains unknown 22 

whether similar neurophysiological mechanisms encode temporal cues like voice-onset time 23 

(VOT), which distinguishes sounds like /b/-/p/. We used direct brain recordings in humans to 24 

investigate the neural encoding of temporal speech cues with a VOT continuum from /ba/ to /pa/. 25 

We found that distinct neural populations respond preferentially to VOTs from one phonetic 26 

category, and are also sensitive to sub-phonetic VOT differences within a population’s preferred 27 

category. In a simple neural network model, simulated populations tuned to detect either 28 

temporal gaps or coincidences between spectral cues captured encoding patterns observed in real 29 

neural data. These results demonstrate that a spatial/amplitude neural code underlies the cortical 30 

representation of both spectral and temporal speech cues. 31 

 32 
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INTRODUCTION 38 

 39 

During speech perception, listeners must extract acoustic cues from a continuous sensory 40 

signal and map them onto discrete phonetic categories, which are relevant for meaning(1, 2). 41 

Many such cues to phonological identity are encoded within the fine temporal structure of 42 

speech(3–5). For example, voice-onset time (VOT), defined as the interval between a stop 43 

consonant’s release and the onset of vocal fold vibration (acoustically, the burst and the voicing), 44 

is a critical cue that listeners use to distinguish voiced (e.g., /b/, /d/, /g/) from voiceless (e.g., /p/, 45 

/t/, /k/) stop consonants in English(6, 7). When the burst and voicing are roughly coincident 46 

(short VOT; ~0ms), listeners perceive a bilabial stop as a /b/, but when voicing follows the burst 47 

after a temporal gap (long VOT; ~50ms), listeners hear a /p/. 48 

Recent evidence from human electrocorticography (ECoG) has shown that information 49 

about a speech sound’s identity is encoded in the amplitude of neural activity at phonetically-50 

tuned cortical sites in the superior temporal gyrus (STG)(8). Distinct neural populations in this 51 

region respond selectively to different classes of phonemes that share certain spectral cues, such 52 

as the burst associated with stop consonants or the characteristic formant structure of vowels 53 

produced with specific vocal tract configurations. However, it is unclear whether phonetic 54 

categories distinguished by temporal cues (e.g., voiced vs. voiceless stops) are represented within 55 

an analogous spatial encoding scheme. If so, this would entail that local neural populations are 56 

tuned to detect not merely the presence of certain spectral cues (the burst and voicing), but also 57 

their timing relative to one another. 58 

In addition to distinguishing phonetic categories, the exact VOT of a given utterance of a 59 

/b/ or a /p/ will vary considerably depending on numerous factors such as speech rate, phonetic 60 

context, and speaker accent(9–15). Although only categorical phonetic identity (e.g., whether a 61 

particular VOT is more consistent with a /b/ or a /p/) is strictly necessary for understanding 62 

meaning, sensitivity to fine-grained sub-phonetic detail (e.g., whether a particular /p/ was 63 

pronounced with a 40ms vs. a 50ms VOT) is also crucial for robust speech perception, allowing 64 

listeners to flexibly adapt and to integrate multiple cues to phonetic identity online in noisy, 65 

unstable environments(16–21). However, the neurophysiological mechanisms that support 66 

listeners’ sensitivity(22–28) to such detailed speech representations are not known. We tested 67 

whether sub-phonetic information might be encoded in the neural response amplitude of the 68 

same acoustically-tuned neural populations that encode phonetic information in human auditory 69 

cortex. 70 

To address these questions, we recorded neural activity directly from the cortex of seven 71 

human participants using high-density ECoG arrays while they listened to and categorized 72 

syllables along a VOT continuum from /ba/ (0ms VOT) to /pa/ (50ms VOT). We found that the 73 

amplitude of cortical responses in STG simultaneously encodes both phonetic and sub-phonetic 74 

information about a syllable’s initial VOT. In particular, spatially discrete neural populations 75 

respond preferentially to VOTs from one category (either /b/ or /p/). Furthermore, peak response 76 

amplitude is modulated by stimulus VOT within each population’s preferred – but not its non-77 

preferred – voicing category (e.g., stronger response to 0ms than to 10ms VOT in voiced-78 

selective [/b/-selective] neural populations). This same encoding scheme emerged in a 79 

computational neural network model simulating neuronal populations as leaky integrators tuned 80 

to detect either temporal coincidences or gaps between distinct spectral cues. Our results provide 81 

direct evidence that phonetic and sub-phonetic information carried by VOT are represented 82 

within spatially discrete, phonetically-tuned neural populations that integrate temporally-83 
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distributed spectral cues in speech. This represents a crucial step towards a unified model of 84 

cortical speech encoding, demonstrating that both spectral and temporal cues and both phonetic 85 

and sub-phonetic information are represented by a common (spatial) neural code. 86 

 87 

RESULTS 88 

 89 

Participants listened to and categorized speech sounds from a digitally synthesized 90 

continuum of consonant-vowel syllables that differed linearly only in their voice-onset time 91 

(VOT) from /ba/ (0ms VOT) to /pa/ (50ms VOT). This six-step continuum was constructed by 92 

manipulating only the relative timing of the spectral burst and the onset of voicing while holding 93 

all other acoustic properties of the stimuli constant (Figures 1A/B; see Methods)(29). Analysis 94 

of participants’ identification behavior confirmed that stimuli with longer VOTs were more often 95 

labeled as /pa/ (mixed effects logistic regression: βVOT = 0.19, t = 17.78, p = 5.6*10
-63

; data for 96 

example participant in Figure 1C; data for all participants in Figure 1-figure supplement 1). 97 

Moreover, and consistent with past work, listeners’ perception of the linear VOT continuum was 98 

sharply non-linear, a behavioral hallmark of categorical perception(30–32). A psychophysical 99 

category boundary between 20ms and 30ms divided the continuum into stimuli most often 100 

perceived as voiced (/b/: 0ms, 10ms, 20ms VOTs) or as voiceless (/p/: 30ms, 40ms, 50ms 101 

VOTs). 102 

 103 

Temporal cues to voicing category are encoded in spatially distinct neural populations 104 

 105 

To investigate neural activity that differentiates the representation of speech sounds based 106 

on a temporal cue like VOT, we recorded high-density electrocorticography in seven participants 107 

while they listened to the VOT continuum. We examined high-gamma power (70-150 Hz)(33–108 

36), aligned to the acoustic onset of each trial (burst onset), at every speech-responsive electrode 109 

on the lateral surface of the temporal lobe of each patient (n = 346 electrodes; see Methods for 110 

details of data acquisition, preprocessing, and electrode selection). 111 

We used nonparametric correlation analysis (Spearman’s ρ) to identify electrodes where 112 

the peak high-gamma amplitude was sensitive to stimulus VOT. Across all participants, we 113 

found 49 VOT-sensitive sites, primarily located over the lateral mid-to-posterior STG, 114 

bilaterally. Peak response amplitude at these VOT-sensitive electrodes reliably discriminated 115 

between voicing categories, exhibiting stronger responses to either voiced (/b/; VOT = 0-20ms; n 116 

= 33) or voiceless (/p/; VOT = 30-50ms; n = 16) stimuli (Figure 1D; locations of all sites shown 117 

in Figures 2A and 1-figure supplement 2). We observed that, within individual participants, 118 

electrodes spaced only 4mm apart showed strong preferences for different voicing categories, 119 

and we did not observe any clear overall regional or hemispheric patterns in the prevalence or 120 

selectivity patterns of VOT-sensitive electrodes (see Methods for additional information). 121 

Robust category selectivity in voiceless-selective (V-) and voiced-selective (V+) neural 122 

populations emerged as early as 50-150ms post-stimulus onset and often lasted for several 123 

hundred milliseconds (example electrodes in Figure 1E). Across all VOT-sensitive electrodes, 124 

voicing category selectivity was reliable whether a trial’s voicing category was defined based on 125 

the psychophysically-determined category boundary (0-20ms vs. 30-50ms VOTs; V- electrodes: 126 

z = 3.52, p = 4.4x10
-4

; V+ electrodes: z = -5.01, p = 5.4x10
-7

; Wilcoxon signed-rank tests) or 127 

based on the actual behavioral response recorded for each trial (V- electrodes: p = 4.9x10
-4

; V+ 128 

electrodes: p = 6.1x10
-5

; Wilcoxon signed-rank tests). 129 
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These results show that spatially distinct neural populations in auditory cortex are tuned 130 

to speech sound categories defined by a temporal cue. Critically, if individual neural populations 131 

only responded to spectral features (e.g., to the burst or to the onset of voicing), we would not 132 

have observed overall amplitude differences in their responses to /b/ versus /p/ categories. 133 

Given this pattern of spatial tuning, we tested whether the voicing category of single 134 

trials could be reliably decoded from population neural activity across electrodes. For each 135 

participant, we trained a multivariate pattern classifier (linear discriminant analysis with leave-136 

one-out cross validation) to predict trial-by-trial voicing category using high-gamma activity 137 

across all speech-responsive electrodes on the temporal lobe during the peak neural response 138 

(150-250ms after stimulus onset; see Methods). We found that, across participants, classification 139 

accuracy was significantly better than chance (Wilcoxon signed-rank test: p = 0.016; Figure 1F, 140 

leftmost box plot), demonstrating that spatially and temporally distributed population neural 141 

activity during the peak response contains information that allows for decoding of a temporally-142 

cued phonetic distinction in speech. 143 

 144 

Peak neural response amplitude robustly encodes voicing category 145 

 146 

Next, we asked which features of the population neural response encode voicing 147 

category. Specifically, we evaluated three alternatives for how temporally-cued voicing category 148 

is encoded by high-gamma responses in cortex during the peak neural response: (1) the spatial 149 

pattern of peak response amplitude across electrodes, (2) the temporal patterns of evoked 150 

responses across electrodes during the peak response, or (3) both amplitude and timing of neural 151 

activity patterns. We tested these hypotheses by selectively corrupting amplitude and/or temporal 152 

neural features that were inputs for the classifier. As with the previous analyses, and following 153 

prior work on speech sound encoding(8), these analyses (Figure 1F) focused on cortical high-154 

gamma activity during the peak response window (150-250ms after stimulus onset; but see 155 

Figure 3 for analyses of an earlier time window). 156 

To corrupt temporal information, we randomly jittered the exact timing of the neural 157 

response for each trial by shifting the 100ms analysis window by up to 50ms. Because the 158 

uniform random jitter was applied independently to each trial, this procedure disrupts any 159 

temporal patterns during the peak neural response that might reliably distinguish trials of 160 

different voicing categories, such as precise (millisecond-resolution) timing of the peak response 161 

at an electrode or the dynamics of the evoked response during the peak window, including local 162 

temporal dynamics (during a single electrode’s peak response) or ensemble temporal dynamics 163 

(the relative timing of responses of spatially-distributed electrodes in the same participant). To 164 

corrupt amplitude information, we eliminated any condition-related differences in the peak 165 

response amplitude at every electrode. For each electrode, the evoked high-gamma response to 166 

all trials within a given voicing category were renormalized so that the average responses to both 167 

voicing categories had identical amplitudes at the peak, but could still vary reliably in the timing 168 

and dynamics during the peak window. These techniques allowed us to examine the relative 169 

contributions of temporal and amplitude information contained within the peak neural response 170 

window to the classification of voicing category (see Methods for detailed description of this 171 

approach). 172 

Across participants, we found that, when the classifiers had access to amplitude 173 

information but not timing information (+Amplitude/-Timing) during the peak response, 174 

performance was significantly better than chance (Wilcoxon signed-rank test: p = 0.016; Figure 175 
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1F). Furthermore, despite the profound corruption of temporal information in the neural 176 

responses, classification accuracy was statistically comparable to the model that had access to 177 

both amplitude and timing information (+Amplitude/+Timing; Wilcoxon signed-rank test: p = 178 

0.69; Figure 1F), suggesting that amplitude information alone is sufficient for classifying a 179 

trial’s voicing category. 180 

In contrast, when amplitude information was corrupted and only temporal patterns in the 181 

peak response window were reliable (-Amplitude/+Timing), classifier performance was not 182 

different from chance (Wilcoxon signed-rank test: p = 0.69; Figure 1F) and was worse for every 183 

participant compared to the model with both types of information (Wilcoxon signed-rank test: p 184 

= 0.016). Finally, we compared the model with only timing information to a model where both 185 

amplitude and timing information during the peak window were corrupted (-Amplitude/-186 

Timing). We found that preserving timing information alone had no effect on classification 187 

performance compared to the most impoverished model (-Amplitude/-Timing; Wilcoxon signed-188 

rank test: p = 0.58; Figure 1F), which also failed to perform better than chance (Wilcoxon 189 

signed-rank test: p = 0.94; Figure 1F). Together, these results constitute evidence for a 190 

spatial/amplitude code for speech categories that differ in a temporal cue. Thus, localized peak 191 

high-gamma response amplitude spatially encodes voicing of single trials in STG, analogous to 192 

other spectrally-cued phonetic features(8). Note that, while spatial (and not temporal) patterns of 193 

high-gamma responses robustly encode voicing during this critical peak window, we later 194 

describe additional analyses that address possible temporal encoding patterns in the local field 195 

potential (Figure 1-figure supplements 3 and 4) and in an earlier time window (Figure 3). 196 

 197 

 198 
Fig. 1. Speech sound categories that are distinguished by a temporal cue are spatially encoded in the 199 
peak amplitude of neural activity in distinct neural populations. A. Stimuli varied only in voice-onset 200 
time (VOT), the duration between the onset of the burst (top) and the onset of voicing (bottom) (a.u. = 201 
arbitrary units). B. Acoustic waveforms of the first 100ms of the six synthesized stimuli. C. Behavior for 202 
one example participant (mean  bootstrap SE). Best-fit psychometric curve (mixed effects logistic 203 
regression) yields voicing category boundary between 20-30ms (50% crossover point). D. Neural 204 
responses in the same representative participant show selectivity for either voiceless or voiced VOTs at 205 
different electrodes. Electrode size indicates peak high-gamma (HG; z-scored) amplitude at all speech-206 
responsive temporal lobe sites. Electrode color reflects strength and direction of selectivity (Spearman’s 207 
ρ between peak HG amplitude and VOT) at VOT-sensitive sites (p < 0.05). E. Average HG responses ( 208 
SE) to voiced (0-20ms VOTs; red) and voiceless (30-50ms VOTs; blue) stimuli in two example electrodes 209 
from D, aligned to stimulus onset (e1: voiceless-selective, V-; e2: voiced-selective, V+). Horizontal black 210 
bars indicate timepoints with category discriminability (p < 0.005). Grey boxes mark average peak 211 
window ( SD) across all VOT-sensitive electrodes (n = 49). F. Population-based classification of 212 
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voicing category (/p/ vs. /b/) during peak window (150-250ms after stimulus onset). Chance is 50%. 213 
Boxes show interquartile range across all participants; whiskers extend to best- and worst-performing 214 
participants; horizontal bars show median performance. Asterisks indicate significantly better-than-215 
chance classification across participants (p < 0.05; n.s. = not significant). Circles represent individual 216 
participants. 217 
 218 

The encoding of stop consonant voicing in the amplitude of evoked high-gamma 219 

responses in STG suggests that the representation of temporally-cued phonetic features may be 220 

explained within the same neural coding framework as the representation of spectrally-cued 221 

phonetic features. However, previous work on the cortical representation of voicing has 222 

identified a role for temporal information in the local field potential (LFP) (37, 38), which is 223 

dominated by lower- frequencies (39, 40). 224 

To link our results with this existing literature, we conducted a series of exploratory 225 

analyses of the neural responses to our stimuli using the raw voltage (LFP) signal. For each 226 

VOT-sensitive electrode (defined in the high-gamma analysis), we estimated the correlations 227 

between VOT and peak latency and between VOT and peak amplitude for 3 peaks in the 228 

auditory evoked potential (AEP) occurring approximately 75-100 ms (P), 100-150 ms (N), and 229 

150-250 ms (P) after stimulus onset (Figure 1-figure supplement 3)(41, 42). We found that 230 

some VOT-sensitive electrodes encoded VOT in the latency of these peaks (e.g., Figure 1-figure 231 

supplement 4, panels E/I/M), replicating previous results (43). However, among electrodes that 232 

encode VOT in peak high-gamma amplitude, there exist many more electrodes that do not 233 

encode VOT in these temporal features of the AEP, and many that also encode VOT in the 234 

amplitude of these AEP peaks (Figure 1-figure supplements 3 and 4). This further supports the 235 

prominent role that amplitude information plays in the neural representation of voicing and VOT, 236 

both in high-gamma and in the LFP. Therefore, subsequent analyses focus on the high-gamma 237 

amplitude. (For detailed descriptions of these LFP analyses and their results, see Methods and 238 

Figure 1-figure supplements 3 and 4.) 239 

 240 

Peak response amplitude encodes sub-phonetic VOT information within preferred 241 

category 242 

 243 

Next, we assessed whether VOT-sensitive neural populations (Figure 2A), which reliably 244 

discriminate between phonetic categories (voiced vs. voiceless), also encoded within-category 245 

sub-phonetic detail in the peak response amplitude. Specifically, the cortical representation of 246 

stimuli from the same voicing category but with different VOTs (e.g., 30, 40, and 50ms VOTs 247 

that all correspond to /p/) could be either categorical (i.e., all elicit the same peak response 248 

amplitude) or graded (i.e., peak response amplitude depends on within-category VOT). 249 

We examined the average responses to each of the six VOTs separately in the voiceless-250 

selective electrodes (V-; Figure 2B) and the voiced-selective electrodes (V+; Figure 2C). We 251 

observed clear differences in activity evoked by different VOTs at the peak response (~200ms 252 

after stimulus onset), even within the same voicing category, consistent with sensitivity to sub-253 

phonetic detail(44–47). However, the discriminability of responses to within-category VOTs 254 

depended on the preferred voicing category of a given electrode. 255 

To quantify this observation, at each electrode, we computed the rank-based correlation 256 

(Spearman’s ρ) between stimulus VOT and peak response amplitude separately for each voicing 257 

category (0-20ms and 30-50ms VOTs). This procedure resulted in two correlation coefficients 258 

for each VOT-sensitive site (ρ0-20, ρ30-50) and corresponding test statistics reflecting the strength 259 
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of within-category amplitude encoding of stimulus VOT in each voicing category. These test 260 

statistics (one per voicing category per VOT-sensitive electrode) then served as the input data for 261 

a series of signed-rank statistical tests to assess overall within-category encoding properties of 262 

groups of electrodes (e.g., of all V- electrodes) (see Methods for details). For example, consider 263 

V- electrodes, which exhibit stronger responses, overall, for voiceless stimuli (30-50ms VOTs) 264 

compared to voiced stimuli (0-20ms VOTs). Across V- electrodes, we found that voiceless 265 

stimuli with longer VOTs (i.e., closer to the preferred category’s 50ms endpoint VOT) also elicit 266 

increasingly stronger responses (Wilcoxon signed-rank test: z = 3.52, p = 4.4x10
-4

). At the same 267 

V- sites, however, within-category VOT does not reliably predict response amplitude among 268 

(non-preferred) voiced stimuli (Wilcoxon signed-rank test: z = -1.60, p = 0.11; Figure 2B: 269 

differences among solid blue lines but not dashed red lines). Across all V- and V+ electrodes, 270 

peak high-gamma response amplitude encoded stimulus VOT within the preferred category 271 

(Wilcoxon signed-rank test: z = 6.02, p = 1.7x10
-9

), but not the nonpreferred category (Wilcoxon 272 

signed-rank test: z = 1.31, p = 0.19). While V- electrodes encoded sub-phonetic VOT more 273 

robustly within the voiceless category than within the voiced category (Figure 2D, left; 274 

Wilcoxon signed-rank test: z = 3.00, p = 2.7x10
-3

), the opposite pattern emerged for V+ 275 

electrodes, which encoded sub-phonetic VOT more robustly within the voiced category than 276 

within the voiceless category (Figure 2D, right; Wilcoxon signed-rank test: z = 3.78, p = 1.6x10
-

277 
4
). 278 

Together, these analyses revealed two key results: (1) VOT encoding in human STG is 279 

not purely categorical, but also (2) the relationship between response amplitude and VOT is not 280 

linear across the entire continuum (Figure 2D). These results suggest that, even at the level of 281 

STG, the brain maintains information about the specific, sub-phonetic details of individual 282 

speech sounds. The asymmetrical pattern of within-category encoding suggests that individual 283 

neural populations in human auditory cortex encode information about both the category identity 284 

of a speech sound and its more fine-grained acoustic properties, or its “category goodness.”(22, 285 

44, 48) 286 

 287 
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 288 
Fig. 2. Human auditory cortex encodes both phonetic (between-category) and sub-phonetic (within-289 
category) information in peak response amplitude, which can be modeled by a simple neural network 290 
that implements temporal gap and coincidence detection. A. Spatial distribution of VOT-sensitive 291 
electrodes across all (on standardized brain). B. Average ( SE) normalized HG response to each VOT 292 
across all voiceless-selective (V-) electrodes, aligned to stimulus onset. Line style denotes category 293 
membership of a given VOT (solid: preferred category; dashed: non-preferred category). Grey box marks 294 
average peak window ( SD) across all VOT-sensitive electrodes. C. Average ( SE) normalized response 295 
to each VOT across all voiced-selective (V+) electrodes. D. Average ( SE) peak response to each VOT 296 
stimulus for V- electrodes (left) and V+ electrodes (right) (see Methods). E. A simple neural network 297 
model (top) comprised of five leaky integrator nodes was implemented to examine computational 298 
mechanisms that could account for the spatial encoding of a temporal cue (VOT). Arrows and circle 299 
represent excitatory and inhibitory connections between nodes. See Methods for details on model 300 



 

 10 

parameters. Postsynaptic potentials (PSPs) illustrate the internal dynamics of the gap detector (GAP, 301 
middle) and coincidence detector (COINC., bottom) in response to simulated VOT stimuli (line color). 302 
Outputs (panels F/G) are triggered by suprathreshold instantaneous PSPs (PSP, dark lines) but not 303 
by subthreshold PSPs (PSP<; semitransparent lines). F. Model outputs (a.u. = arbitrary units) evoked 304 
by simulated VOT stimuli for GAP (1 cycle = 10ms). Note that outputs for 0ms and 10ms VOTs are 305 
overlapping. No error bars shown because model simulations are deterministic. Grey box marks average 306 
peak window (across panels F/G); width matches peak window of real neural data (panels B/C). G. 307 
Model outputs for COINC. H. Peak response to each simulated VOT stimulus for GAP (left) and COINC. 308 
(right). 309 
 310 

A simple neural network model of VOT encoding in STG 311 

 312 

Thus far, we have demonstrated that a temporal cue that distinguishes speech sounds is 313 

represented by a spatial/amplitude code(49, 50) in human STG. To understand how this could be 314 

implemented computationally in the brain, we built an architecturally minimalistic neural 315 

network (Figure 2E, top). The network was designed to implement a small set of basic 316 

computations, motivated by well-established models of temporal processing(51–57). 317 

Specifically, our model employs discrete integrator units that detect temporal gaps or 318 

coincidences between distinct spectral events by incorporating canonical neurophysiological 319 

mechanisms that allow current input to modulate a unit’s sensitivity to subsequent input in highly 320 

specific ways.  321 

The entire model is comprised of just five localist units: a burst detector, a voicing 322 

detector, a gap detector (GAP), a coincidence detector (COINC.), and an inhibitory unit. 323 

Conventional leaky integrator dynamics governed continuously varying activation values of each 324 

rectified linear unit within the model(58, 59), with the activity 𝑎𝑖(𝑡) of a given unit 𝑖 at time 𝑡 325 

depending on its prior activity 𝑎𝑖(𝑡 − 1), the weighted sum of its excitatory and inhibitory inputs 326 
∑ 𝑤𝑗𝑖 ∗ 𝑎𝑗(𝑡 − 1)𝑗 , and unit-specific activation parameters (e.g., propagation threshold [𝜃], decay 327 

rate). To illustrate intuitively how time-dependent neuronal properties can give rise to spatially-328 

localized temporal cue processing, model parameters and connection weights were set manually 329 

(see Methods for details; Figure 2-figure supplement 1; Supplementary File 2). We presented 330 

the network with simplified inputs mimicking the spectral and temporal properties of the six 331 

VOT stimuli used in the ECoG experiment (Figure 1A; see Methods; Supplementary File 3). 332 

Presentation of burst and voicing inputs triggered propagation of activation that spread through 333 

the network, and our analyses assessed how the resulting activation dynamics differed depending 334 

on VOT. 335 

The simulated responses of GAP and COINC. to VOTs of 0-50ms are shown in Figures 336 

2F/G. We observed striking qualitative similarities between GAP’s simulated outputs (Figure 337 

2F) and the real neural responses of V- electrodes (Figure 2B), and between COINC.’s outputs 338 

(Figure 2G) and the V+ electrodes (Figure 2C). By design, voicing category is clearly 339 

distinguished in both GAP and COINC., with GAP responding more strongly to longer (voiceless) 340 

VOTs (30-50ms), and COINC. responding more strongly to shorter (voiced) VOTs (0-20ms). 341 

This demonstrates that spatial encoding of temporal cues (gaps vs. coincidences) can arise 342 

naturally within a simple, biologically-inspired neural network(51–57). 343 

Perhaps more surprisingly, we also found that both GAP and COINC. detector units exhibit 344 

sensitivity to within-category VOT distinctions (Figure 2H). These partially graded activations 345 

mirror the pattern observed in the neural data (Figure 2D), where V- electrodes and GAP units 346 
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are only sensitive to differences among long (voiceless) VOTs, and V+ electrodes and COINC. 347 

units are only sensitive to differences among short (voiced) VOTs. 348 

These relatively sophisticated dynamics are the natural result of well-established 349 

computational and physiological mechanisms. Within the model, the burst and voicing detector 350 

units are tuned to respond independently to distinct spectral cues in the simulated acoustic input. 351 

Hence, the relative timing of their responses, but not their amplitudes, differ as a function of 352 

VOT. Both the gap (GAP) and the coincidence (COINC.) detector units receive excitatory input 353 

from both the burst and voicing detector units, but GAP and COINC. differ in how they integrate 354 

these inputs over time. Specifically, as described below, while initial excitatory input (from the 355 

burst detector) temporarily decreases the sensitivity of GAP to immediate subsequent excitatory 356 

input (from the voicing detector), the opposite is true of COINC. 357 

In particular, prior work has shown that one computational implementation of gap 358 

detection involves configuration of a slow inhibitory postsynaptic potential (IPSP) microcircuit 359 

(Figure 2E, middle)(51, 52, 60, 61). In our model, activity in the burst detector following burst 360 

onset elicits fast suprathreshold excitatory postsynaptic potentials (EPSPs) in both GAP and the 361 

inhibitory unit, immediately followed by a longer-latency (“slow”) IPSP in GAP. This slow IPSP 362 

renders GAP temporarily insensitive to subsequent excitatory input from the voicing detector, 363 

meaning that voicing-induced excitation that arrives too soon (e.g., 10ms) after the burst input, 364 

when inhibition is strongest, is not able to elicit a second suprathreshold EPSP in GAP. 365 

Consequently, all short VOTs (below some threshold) elicit uniformly weak responses in GAP 366 

that reflect only the initial excitatory response to the burst (see, e.g., indistinguishable responses 367 

to 0ms and 10ms VOTs in Figure 2F). However, as GAP gradually recovers from the burst-368 

induced slow IPSP, later-arriving voicing input (i.e., longer VOTs) tends to elicit suprathreshold 369 

responses that grow increasingly stronger with longer gaps, until GAP has reached its pre-IPSP 370 

(resting) baseline. In this way, our implementation of gap detection naturally captures three key 371 

patterns observed across V- electrodes (Figure 2H, left; Figure 2D, left): (1) amplitude 372 

encoding of a temporally cued category (selectivity for gaps over coincidences); (2) amplitude 373 

encoding of within-category differences in the preferred category (amplitude differences among 374 

gaps of different durations); and (3) no amplitude encoding of differences within the non-375 

preferred category (uniformly lower amplitude responses to short VOTs of any duration). 376 

In contrast, coincidence detection(54–56, 62–64) (Figure 2E, bottom) emerges in the 377 

model because activity in the burst detector evokes only a subthreshold EPSP in COINC., 378 

temporarily increasing COINC.’s sensitivity to immediate subsequent excitatory input (from the 379 

voicing detector). During this period of heightened sensitivity, voicing-induced excitatory input 380 

that arrives simultaneously or after short lags can elicit larger amplitude (additive) EPSPs than 381 

could voicing-induced excitatory input alone. Because the magnitude of the initial burst-induced 382 

EPSP gradually wanes, the summation of EPSPs (from the burst and voicing) is greatest (and 383 

hence elicits the strongest response) for coincident burst and voicing (0ms VOT), and the 384 

magnitude of COINC.’s response to other voiced stimuli (e.g., 10-20ms VOTs) becomes weaker 385 

as the lag between burst and voicing increases. Finally, in voiceless stimuli, since voicing arrives 386 

late enough after the burst (30+ ms) that there is no residual boost to COINC.’s baseline post-387 

synaptic potential, elicited responses are entirely driven by a suprathreshold voicing-induced 388 

EPSP that reaches the same peak amplitude for all voiceless stimuli. Thus, our implementation of 389 

coincidence detection captures three key patterns observed in V+ electrodes (Figure 2H, right; 390 

Figure 2D, right): (1) amplitude encoding of a temporally cued category (selectivity for 391 

coincidences over gaps); (2) amplitude encoding of within-category differences in the preferred 392 
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category (amplitude differences among stimuli with short VOTs); and (3) no amplitude encoding 393 

of differences within the non-preferred category (uniformly lower amplitude responses to long 394 

VOTs of any duration). 395 

In summary, the neurophysiological dynamics underlying local STG encoding of VOT 396 

can be modeled using a simple, biologically-inspired neural network. The computational model 397 

captures both the between-category (phonetic) and within-category (sub-phonetic) properties of 398 

observed neural representations via well-established physiological mechanisms for gap and 399 

coincidence detection(51–57). 400 

 401 

Mechanisms that explain local category-selectivity also predict early temporal dynamics 402 

 403 

Thus far, we have focused on the encoding of speech sounds that differ in VOT based on 404 

activity patterns around the peak of the evoked response. However, in comparing the real and 405 

simulated neural data (Figure 2), we also observed a qualitative resemblance with respect to the 406 

onset latencies of evoked responses. Specifically, the timing of the evoked neural responses 407 

(relative to burst onset) appeared to depend on stimulus VOT in V+ electrodes and in the 408 

coincidence detector (COINC.) unit (Figures 2C/G), but not in V- electrodes or in the gap 409 

detector (GAP) unit (Figure 2B/F). This pattern could suggest that early temporal dynamics of 410 

the evoked response contribute to the pattern of category selectivity observed at the peak. 411 

We examined the neural activity evoked by each VOT stimulus in V- and V+ electrodes 412 

at the onset of the response, typically beginning approximately 75-125ms after stimulus (burst) 413 

onset. In the same two example electrodes from Figure 1E, we observed clear differences in the 414 

relationship between response onset latency and VOT (Figure 3A). To quantify the onset latency 415 

for each electrode to each VOT stimulus, we found the first timepoint after stimulus onset where 416 

the evoked high gamma response exceeded 50% of the electrode’s overall peak amplitude (grand 417 

mean across conditions). The rank correlation between VOT and response onset latency for e1 (a 418 

V- electrode) was substantially lower (Spearman’s ρ = 0.42) than for e2 (a V+ electrode; ρ = 419 

0.89). 420 

A bootstrapped rank-based correlation coefficient was computed for each V- and V+ 421 

electrode (1000 resamples; see Methods). We found that response onset latency was strongly 422 

associated with VOT for V+, but not V-, electrodes (Wilcoxon signed-rank tests: V+, p = 1.6x10
-

423 
6
; V-, p = 0.57), and this difference between the two electrode types was highly reliable (Mann-424 

Whitney rank-sum test: p = 1.7x10
-5

) (Figure 3B). 425 

The association between VOT and response latency also differed in GAP versus COINC. 426 

units in the model simulations (Figures 2F/G), with VOT-dependent response latencies 427 

emerging for COINC., but not GAP. Closer examination of the model’s internal dynamics reveals 428 

how the same time-dependent mechanisms that give rise to peak amplitude encoding of VOT are 429 

also responsible for these early temporal dynamics. As described above, the category selectivity 430 

of GAP (voiceless) and COINC. (voiced) results from how each unit’s subsequent activity is 431 

modulated after detection of the burst. While the burst always elicits a fast suprathreshold 432 

response in GAP (irrespective of VOT), COINC.’s response to the burst alone is subthreshold 433 

(Figure 2E, middle vs. bottom). Consequently, GAP’s initial response is evoked by the burst of 434 

any VOT stimulus, so the response onset latency (when aligned to burst onset) does not depend 435 

on VOT (Figure 2F). Conversely, COINC.’s earliest suprathreshold response is triggered by the 436 

onset of voicing, so the response onset latency (relative to burst onset) is later for longer VOTs 437 

(Figure 2G). Thus, the same well-established physiological mechanisms that give rise to peak 438 
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amplitude encoding of temporally-cued voicing categories also predict the early temporal 439 

dynamics we observe in real neural data. 440 

Finally, Figure 3 shows that, unlike during the peak response window (150-250ms after 441 

stimulus onset; Figure 1F), temporal information does encode VOT during an earlier window 442 

around the neural response onset in some neural populations. Indeed, both sub-phonetic and 443 

phonetic category-level information are carried by the onset latency of V+ electrodes, with 444 

evoked responses arising later at these sites for stimuli with progressively longer VOTs. 445 

Critically, the modeling results indicate that both the amplitude encoding patterns during the 446 

peak window and the temporal encoding patterns during the earlier onset window are captured 447 

by the same canonical neurophysiological mechanisms. 448 

 449 

 450 
Fig. 3. Early temporal dynamics of stimulus-evoked neural responses differ between voiceless-selective 451 
(V-) and voiced-selective (V+) electrodes. A. Normalized trial-averaged HG responses to each VOT 452 
stimulus (line color) in two example electrodes (e1 and e2; same electrodes shown in Figures 1D/E). The 453 
time window (x-axis) is relative to onset of the burst and precedes the peak response. Horizontal bars 454 
show estimates (bootstrapped mean  SE) of response onset latency for each VOT (first timepoint 455 
exceeding 50% of electrode’s average peak HG). Mean bootstrapped rank-based correlation 456 
(Spearman’s ρ) between VOT and response onset latency shown for e1 (blue) and e2 (red). B. Across all 457 
V- electrodes, the bootstrapped correlation coefficients did not differ significantly from 0, suggesting that 458 
onset latency was time-locked to the burst. In contrast, across all V+ electrodes, the bootstrapped 459 
correlation coefficients were reliably positive (longer latencies for longer VOTs), and greater than for V- 460 
electrodes. Circles represent individual electrodes (filled: example electrodes in A). Boxes show 461 
interquartile range; whiskers extend to maximum/minimum of each group (excluding 2 outlier V+ 462 
electrodes); vertical bars are medians. Asterisks indicate significance (p < 10-4; n.s. = not significant). 463 
  464 
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DISCUSSION 465 

 466 

This study investigated how voice-onset time (VOT), a temporal cue in speech, is 467 

represented in human auditory cortex. Using direct intracranial recordings, we found discrete 468 

neural populations located primarily on the bilateral posterior and middle STG that respond 469 

preferentially to either voiced sounds, where the onset of voicing is coincident with the burst or 470 

follows it after a short lag (20ms or less), or voiceless sounds, where the onset of voicing follows 471 

the burst after a temporal gap of at least 30-50ms. 472 

Past work has also found that phonetic information about speech sounds is encoded in the 473 

amplitude of evoked neural responses at spatially localized cortical sites(8). In that work, 474 

however, STG activity was shown to encode the spectral properties of speech sounds most 475 

robustly, such as whether a phoneme is a vowel or a consonant and whether a consonant’s 476 

spectrum is broadband (as in plosives, like /b/ and /p/) or is dominated by acoustic energy at high 477 

frequencies (as in fricatives, like /f/ and /s/). 478 

The present results extend these earlier findings in a critical way, suggesting that the 479 

cortical representation of both spectral and temporal cues in speech follow a common spatial 480 

coding scheme. This result is also consistent with prior reports that neural response amplitude 481 

depends on VOT(8), but such results have often involved natural speech stimuli where voicing 482 

categories varied along many other spectral acoustic dimensions besides the temporal cue(65–483 

68). Here, the digitally synthesized VOT stimuli were tightly controlled to vary only in the 484 

relative timing of two invariant spectral cues (burst and voicing), thereby demonstrating that this 485 

temporal speech cue is encoded in the peak high-gamma response amplitude of spatially distinct 486 

neural populations in human STG. 487 

While the present results clearly implicate a spatial/amplitude code in the cortical 488 

representation of VOT, other work has described VOT-dependent temporal response patterns 489 

that can also be used to encode voicing categories(69–71). For instance, Steinschneider and 490 

colleagues have observed neurons and neuronal populations in primate and human auditory 491 

cortices in which short VOTs elicit a single-peaked neural response, while longer VOTs elicit a 492 

double-peaked response(37, 38, 43, 72–75). Under this “local” temporal coding model, the 493 

precise temporal dynamics of the response evoked at a single cortical site could distinguish 494 

voiced from voiceless VOTs. Our examination of the timing and amplitude of three peaks in the 495 

auditory evoked local field potentials of VOT-sensitive electrodes confirmed that such patterns 496 

do appear in some electrodes (Figure 1-figure supplements 3 and 4), clearly demonstrating that 497 

temporal and amplitude codes for VOT are not mutually exclusive (see also temporal encoding 498 

patterns in onset latencies of V+ electrodes; Figure 3). However, as with spectrally-defined 499 

phonetic contrasts (e.g., plosive vs. fricative(8)), it clear that the amplitude of the peak high-500 

gamma (and, in many cases, of the LFP) response emerged as a robust representation of voicing 501 

category and of VOT. 502 

VOT could also be encoded in the relative timing of responses in spatially-distributed, 503 

spectrally-tuned burst- and voicing-selective neural populations. Under this “ensemble” temporal 504 

coding model(76, 77), the pattern of neural activity evoked by voiced VOTs (characterized by 505 

roughly coincident burst and voicing cues) would differ from the pattern evoked by voiceless 506 

VOTs in the precise temporal latency of the response in a vowel-selective neural population (a 507 

voicing detector) compared to the response in a plosive-selective neural population (a burst 508 

detector). However, the fact that we found cortical sites in every participant that exhibited robust 509 

category-dependent differences in their peak response amplitude rules out the possibility that at 510 
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least these neural populations are merely responding to spectral cues in the burst or voicing 511 

alone. 512 

Notably, if either (or both) of these models – a local or ensemble temporal code – were 513 

primarily responsible for the neural representation of VOT in the high-gamma range, then the 514 

selective corruption of temporal information in a classifier (Figure 1F) should have reduced 515 

neural decoding of voicing category to chance levels, while corrupting peak amplitude 516 

information should have had little or no effect. We found the opposite pattern of results: 517 

corrupting peak amplitude information had a devastating effect on the decoding of voicing 518 

category, while corrupting the fine temporal patterns that could have discriminated between 519 

voicing categories had no measurable impact on classifier performance. To be clear, our work 520 

does not rule out the possibility that local or ensemble temporal codes may also play a role in the 521 

cortical representation of VOT. However, it does highlight spatially-localized peak neural 522 

response amplitude as a robust code for VOT. Thus, in contrast to prior work theorizing parallel, 523 

but fundamentally different, coding schemes for spectrally- and temporally-cued phonetic 524 

features(37, 38), we demonstrate evidence for a shared representation of both by high-gamma in 525 

the human superior temporal lobe. 526 

In order to explicitly test potential computational and physiological mechanisms that 527 

could give rise to the observed spatial coding scheme, we implemented an architecturally simple 528 

neural network model. Although it is well known that spectral information is represented by a 529 

spatial neural code from the earliest stages of auditory transduction in the cochlea(78, 79), the 530 

emergence of a spatial code for the representation of temporally-distributed cues in a transient 531 

acoustic signal poses a nontrivial computational problem. Our model highlights one 532 

parsimonious approach by which selectivity for either temporal gaps or coincidences could be 533 

implemented by biologically-inspired neurophysiological microcircuits(51–57). 534 

We found that, just like in the neural data, gap and coincidence detector units responded 535 

to simulated voiced (/b/) and voiceless (/p/) stimuli with different response amplitudes. As such, 536 

we need not invoke any specialized temporal code to account for the representation of temporally 537 

cued phonetic features. Rather, our results provide evidence implicating a common neural coding 538 

scheme in the neural representation of behaviorally relevant speech features, whether they are 539 

embedded within the instantaneous spectrum or the fine temporal structure of the speech signal. 540 

Recent ECoG evidence suggests an even more expansive view of the fundamental role of spatial 541 

coding in cortical speech representation(80) in which different neural populations also encode 542 

pitch(81) and key properties of the speech envelope such as onsets and auditory edges(82, 83). 543 

Crucially, although the neural network was only designed to discriminate between 544 

categories (i.e., gaps vs. coincidences), we also observed graded amplitude differences in 545 

response to different VOTs (Figure 2H), but only in an electrode’s preferred category. These 546 

within-category patterns emerged naturally from the same computational properties that allowed 547 

the network to capture basic between-category encoding: (1) the relative responsiveness of each 548 

temporal integrator unit (GAP, COINC.) to its various inputs (burst, voicing, and inhibition); (2) 549 

the time-dependent properties inherent to neuronal activation dynamics (e.g., decay of 550 

postsynaptic potentials towards a unit’s resting activation level); and (3) the nonlinear 551 

transformation of postsynaptic inputs into response outputs (rectified linear activation function 552 

controlled by a unit’s propagation threshold). 553 

This asymmetric within-category encoding scheme closely resembled the pattern 554 

observed in real neurophysiological data, where peak response amplitude to VOTs within the 555 

same voicing category only differed within a neural population’s preferred category (Figure 556 
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2D). This result clearly demonstrates that human nonprimary auditory cortex maintains a robust, 557 

graded representation of VOT that includes the sub-phonetic details about how a particular 558 

speech token was pronounced(44–47). Even though sub-phonetic information is not strictly 559 

necessary for mapping sound to meaning in stable, noise-free listening environments, this fine-560 

grained acoustic detail has demonstrable effects on listeners’ behavior(22–28), and modern 561 

theories of speech perception agree that perceptual learning (e.g., adaptation to accented 562 

speakers) and robust cue integration would be impossible if the perception of speech sounds 563 

were strictly categorical(16–20, 84–87). Crucially, these data suggest that the same 564 

spatial/amplitude code that is implicated in the representation of phonetic information (from 565 

spectral or temporal cues) can also accommodate the representation of sub-phonetic information 566 

in the speech signal. 567 

The onset latency results (Figure 3) established an entirely novel correspondence 568 

between the real and simulated results that extended beyond the peak response window. 569 

Response onset latencies of V- electrodes were time-locked to the burst (Figures 2B and 3), 570 

while responses of V+ electrodes were time-locked to voicing onset (Figures 2C and 3). These 571 

highly reliable neurophysiological results neatly match specific predictions of our parsimonious 572 

model without the need to postulate additional mechanisms (Figures 2F/G). 573 

The correspondence between simulated and real neural data in the onset latency results 574 

may also have implications for the question of whether the observed temporal integration is 575 

occurring locally in STG or is inherited from earlier levels of auditory processing (e.g., from 576 

midbrain or primary auditory cortex). The model’s gap and coincidence detectors (GAP, COINC.) 577 

are designed to directly simulate neural populations in the STG. Their inputs from the burst and 578 

voicing detectors are only spectrally processed, so, in the model, the temporal onset latency 579 

dynamics (Figures 2F/G) first arise in GAP and COINC. As such, the fact that the model’s 580 

prediction is borne out in the neural data in STG (Figures 2B/C and 3) is consistent with local 581 

temporal integration in STG. While these modeling results do not definitively rule out temporal 582 

integration at lower levels of the ascending auditory pathway, its potentially local emergence in 583 

high-order auditory cortex illustrates how even relatively simple computational models can be 584 

used to generate novel hypotheses, which can ultimately be tested in real neurophysiological 585 

data. 586 

Overall, the results of these model simulations illustrate how the same network properties 587 

that transform temporal cues into a spatial code are also able to naturally explain at least three 588 

additional patterns observed within category-selective neural populations: (1) the graded 589 

encoding of VOT within a population’s preferred category; (2) the lack of graded encoding of 590 

VOT within a population’s non-preferred category; and (3) the early temporal dynamics of 591 

neural responses, which depend on a population’s category-selectivity. Thus, the model provides 592 

an explicit, mathematical account of multiple seemingly disparate observations about the 593 

neurophysiological data, all of which arise directly from a parsimonious implementation of gap- 594 

and coincidence-detection with well-established, theoretically-motivated neuronal circuits. 595 

The model we present is just one of many possible architectures that could capture these 596 

interesting properties of the neural response. For example, mechanisms like temporal delay lines 597 

(54, 56) could also be used to implement gap detection. Broadly, we chose to implement a 598 

simple hand-tuned neural network model to maximize our ability to explore the detailed 599 

dynamics we observed in the neural data. Our approach follows a rich history of using these 600 

types of hand-tuned models to explain a wide array of cognitive and perceptual phenomena 601 

(including the perception of VOT in speech), as exemplified by the influential TRACE model of 602 
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speech perception(84). An alternative approach to modeling VOT perception is to train a neural 603 

network to distinguish voiced from voiceless sounds based on distributed activation dynamics 604 

within biologically-grounded spectral processing maps(88). Our model borrows aspects of these 605 

two approaches (hand-tuning; biological plausibility) and it extends this past work by directly 606 

modeling the time-dependent mechanisms that could give rise to continuously-varying neural 607 

responses in STG. 608 

While the model captured several notable features of the neural data (including some for 609 

which it was not explicitly designed), we observed at least one inconsistency between the 610 

simulated and real neural responses. The model predicted VOT-dependence in the latency of the 611 

peak response in both GAP and COINC. units (Figures 2F/G), but we did not find evidence for 612 

these fine-grained patterns in the high-gamma data (Figures 2B/C; see also lack of category-613 

dependent temporal patterns during peak window: Figure 1F). However, it is unclear whether 614 

this is a false prediction of the model, or whether we did not observe the effect in the neural data 615 

because of, for example, poor signal-to-noise ratio for this effect. Regardless of whether the 616 

discrepancy arises from the model or the real data, it represents a gap in our mechanistic 617 

understanding of the processing of this phenomenon, and should therefore be a target for further 618 

research.  619 

Although topographic functional organization is pervasive among many spatial neural 620 

coding schemes described in sensory neuroscience, including for the representation of spectral 621 

and temporal acoustic cues in audition (e.g., tonotopy in mammalian auditory cortex(78, 79) or 622 

chronotopy in bats(89, 90)), this functional organization seems not to extend to the spatial code 623 

for speech on the lateral temporal cortex in humans. As with tuning for spectrally-cued phonetic 624 

features(8, 82) (e.g., plosives vs. fricatives), VOT-sensitive neural populations in the present 625 

study were scattered throughout posterior and middle superior temporal gyrus with no 626 

discernible topographical map of selectivity or evidence for lateralized asymmetries(71, 91), 627 

although data limitations prevent us from ruling out this possibility entirely (for detailed results, 628 

see Methods). 629 

Most of the present analyses focused on the high-gamma component of the neural 630 

response, but this work does not discount a potential role for lower-frequency oscillations in 631 

speech perception(92, 93) or in the perception of phonemes(94, 95). Indeed, it is clear from the 632 

exploratory analyses of auditory evoked local field potentials (Figure 1-figure supplements 3 633 

and 4) that there do exist complex associations between VOT and the amplitude/temporal 634 

information carried in lower-frequency ranges. Future work should systematically investigate the 635 

relationship between high-gamma and other neural signals (such as the local field potential), 636 

their relative contributions to the perceptual experience of and neural representation of speech, 637 

and the importance of detailed temporal information in each (see, e.g., 42). 638 

Finally, it is critical to distinguish our results from studies describing neural correlates of 639 

categorical speech perception, per se (e.g., 96). Neural responses to different VOT tokens that 640 

are members of the same voicing category can only be considered truly categorical if the 641 

responses are indiscriminable (e.g., 30, 97). In our results, acoustically distinct members of the 642 

same phonetic category are distinguishable in neural populations that are selective for that 643 

voicing category (Figure 2). In light of this graded VOT representation, the present results are 644 

best interpreted as elucidating neural mechanisms of category perception, but not necessarily 645 

categorical perception, of voiced vs. voiceless stop consonants. While limited coverage beyond 646 

the superior temporal lobe precludes us from ruling out the influence of top-down categorical 647 

perception (98–100) (possibly originating in frontal cortex (101–104)) on our results, it is notable 648 
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that the model we present (which does not posit top-down effects) suggests that top-down effects 649 

may not be a necessary condition for explaining the observed non-linear encoding patterns (see 650 

also 84, 85, 105–107). 651 

In conclusion, the present results show that spatially-discrete neural populations in human 652 

auditory cortex are tuned to detect either gaps or coincidences between spectral cues, and these 653 

sites simultaneously represent both phonetic and sub-phonetic information carried by VOT, a 654 

temporal speech cue found in almost all languages(7, 108). This demonstrates a common 655 

(spatial) neural code in STG that accounts for the representation of behaviorally relevant 656 

phonetic features embedded within the spectral and temporal structure of speech. From a simple 657 

model that transforms a temporal cue into a spatial code, we observed complex dynamics that 658 

show how a highly variable, continuous sensory signal can give rise to partially abstract, discrete 659 

representations. In this way, our findings also add to a growing body of work highlighting the 660 

critical role of human STG as a sensory-perceptual computational hub in the human speech 661 

perception system(80, 81, 96, 102, 109–112). 662 

  663 
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METHODS 664 

 665 

Data and code availability. All data and code associated with this study and necessary for 666 

replication of its results are available under a Creative Commons license at the associated Open 667 

Science Framework project page (https://osf.io/9y7uh/).(113) 668 

 669 

Participants. A total of seven human participants with self-reported normal hearing were 670 

implanted with high-density (128 or 256 electrodes; 4 mm pitch) multi-electrode cortical ECoG 671 

surface arrays as part of their clinical treatment for epilepsy. Placement of electrode arrays was 672 

determined based strictly on clinical criteria. For all patients who participated in this study, 673 

coverage included peri-Sylvian regions of the lateral left (n = 3) or right (n = 4) hemisphere, 674 

including the superior temporal gyrus (STG). All participants gave their written informed 675 

consent before the surgery and affirmed it at the start of each recording session. The study 676 

protocol was approved by the University of California San Francisco Committee on Human 677 

Research. Data from two additional participants were excluded from analyses because of 678 

excessive epileptiform activity (artifacts) during recording sessions. 679 

 680 

Imaging. Electrode positions (Figure 1D and Figure 1-figure supplement 2) were determined 681 

from post-surgical computed tomography (CT) scans and manually co-registered with the 682 

patient’s MRI. Details of electrode localization and warping to a standardized brain (MNI; 683 

Figure 2A) are described elsewhere(114). 684 

 685 

Stimuli. Stimuli (Figure 1B) were generated with a parallel/cascade Klatt-synthesizer 686 

KLSYN88a using a 20-kHz sampling frequency (5ms frame width in parameter tracks). All 687 

stimulus parameters were identical across stimuli, with the exception of the time at which the 688 

amplitude of voicing began to increase (in 10ms steps from 0ms to 50ms after burst onset; 689 

Figure 1A). The total duration of each stimulus was 300ms regardless of VOT. The onset noise-690 

burst was 2ms in duration and had constant spectral properties across all stimuli. The dominant 691 

frequency ranges for the vowel were: F0 = 100 Hz; F1 = 736 Hz; F2 = 1221 Hz; F3 = 3241 Hz 692 

(consistent with a vocal tract length of 13.5 cm). Formant transitions always began at 30ms. The 693 

vowel’s amplitude began ramping down 250ms after stimulus onset. The stimuli are made 694 

available among this study’s supplementary materials and at the associated Open Science 695 

Framework page.(113) 696 

 697 

Behavioral Procedure. During ECoG recording, the VOT stimuli were presented monaurally 698 

over free-field loudspeakers at a comfortably listening level via a custom MATLAB script(113) 699 

in a blocked pseudorandom order. Four of seven participants simultaneously performed a 700 

behavioral task wherein they indicated on each trial whether they heard “ba” or “pa” using a 701 

touchscreen tablet (programmed using a custom MATLAB GUI). In these recording sessions, the 702 

onset of the next trial began 500ms after a response was registered or 5 seconds after the end of 703 

the stimulus (if no response was registered). In sessions where participants chose to listen to the 704 

stimuli passively (instead of participating in the behavioral task), the onset of the next trial began 705 

approximately 1000ms after the end of the previous trial. Supplementary File 1 reports number 706 

of trials per participant. 707 

 708 

https://osf.io/9y7uh/
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Behavioral Analysis. For the four participants who participated in the behavioral identification 709 

task, individual trials were excluded from behavioral analysis if a participant did not make a 710 

response or if the participant’s reaction time was more than 3 standard deviations from the 711 

participant’s mean reaction time. 712 

 713 

Behavioral response data were submitted to mixed effects logistic regression with a fixed effect 714 

of VOT (coded as a continuous variable) and random intercepts for participants, allowing 715 

individual participants to vary in their voicing category boundary. Using the best-fit model 716 

estimates, we calculated the overall voicing category boundary across all participants (𝜒  = 717 

21.0ms; Figure 1-figure supplement 1, panel A) and in the each individual participant (after 718 

adjusting for random intercept fit for each participant; Figure 1-figure supplement 1, panel B, 719 

and Figure 1C) as follows(115), where 𝛽0 is the best-fit intercept and 𝛽𝑉𝑂𝑇 is the best-fit effect 720 

of slope: 721 

𝜒 = −
𝛽0
𝛽𝑉𝑂𝑇

 

 722 

ECoG signal processing. 723 

Recording and preprocessing. Voltage fluctuations were recorded and amplified with a 724 

multichannel amplifier optically connected to a digital signal acquisition system (Tucker-Davis 725 

Technologies) sampling at approximately 3051.78 Hz. Line noise was removed via notch 726 

filtering (60 Hz and harmonics at 120 and 180 Hz) and the resulting time series for each session 727 

was visually inspected to exclude channels with excessive noise. Additionally, time segments 728 

with epileptiform activity were excluded. The time series data were then common-average 729 

referenced (CAR) to included electrodes either across an electrode’s row in a 16x16 channel grid 730 

or across the entire grid depending on the technical specifications of the amplifier used for a 731 

given participant.  732 

 733 

High-gamma extraction. The analytic amplitude of the high-gamma (HG; 70-150Hz) 734 

frequency band was extracted by averaging across eight logarithmically-spaced bands with the 735 

Hilbert transform as described elsewhere(8, 112). The HG signal was down-sampled to 400 Hz, 736 

providing temporal resolution to observe latency effects on the order of <10ms (the spacing of 737 

the VOTs of among the six experimental stimuli). 738 

 739 

Trial alignment and extraction. Trial epochs were defined as 500ms before to 1000ms 740 

after each stimulus onset. Trials were excluded for all channels if the epoch window contained 741 

any time segments that had been marked for exclusion during artifact rejection. The HG signal 742 

for each trial was z-scored based on the mean and standard deviation of a baseline window from 743 

500ms to 200ms before stimulus onset. A 50ms moving average boxcar filter was applied to the 744 

HG time series for each trial. 745 

 746 

Local field potential extraction. Data for analyses of auditory evoked local field 747 

potentials consisted of the same raw voltage fluctuations (local field potential), preprocessed 748 

with identical notch filtering, CAR, artifact/channel rejection, and down-sampling (to 400 Hz). 749 

Trial epochs (500ms before to 1000ms after each stimulus onset) were not z-scored. 750 

 751 

Electrode selection. 752 
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Speech-responsive electrodes. An electrode was included in our analyses if (1) it was 753 

anatomically located on the lateral temporal lobe (either superior or middle temporal gyrus), and 754 

(2) the electrode’s grand mean HG (across all trials and timepoints during a window 100-300ms 755 

after stimulus onset) exceeded one standard deviation of the baseline window’s HG activity. 756 

Across all seven participants, 346 electrodes met these criteria (speech-responsive electrodes; 757 

Supplementary File 1; Figure 1-figure supplement 2). 758 

 759 

Peak neural response. The timepoint at which each speech-responsive electrode reached 760 

its maximum HG amplitude (averaged across all trials, irrespective of condition) was identified 761 

as that electrode’s peak, which was used in the subsequent peak encoding analyses. Because we 762 

were focused on auditory-evoked activity in the temporal lobe, the search for an electrode’s peak 763 

was constrained between 0 and 500ms after stimulus onset. Electrode size in Figure 1D and 764 

Figure 1-figure supplement 2 corresponds to this peak HG amplitude for each speech-765 

responsive electrode. 766 

 767 

VOT-sensitive electrodes. To identify electrodes where the peak response depended on 768 

stimulus VOT (VOT-sensitive electrodes), we computed the nonparametric correlation 769 

coefficient (Spearman’s ρ) across trials between VOT and peak HG amplitude. Because 770 

nonparametric (rank-based) correlation analysis measures the monotonicity of the relationship 771 

between two variables, it represents an unbiased (“model-free”) indicator of amplitude-based 772 

VOT encoding, whether the underlying monotonic relationship is categorical, linear, or follows 773 

some other monotonic function (Bishara & Hittner, 2012). This procedure identified 49 VOT-774 

sensitive electrodes across all seven participants (p < 0.05; Figure 2A and Figure 1-figure 775 

supplement 2; Supplementary File 1). Electrode color in Figure 1D and Figure 1-figure 776 

supplement 2 corresponds to the correlation coefficient at each electrode’s peak (min/max ρ = 777 

0.35), thresholded such that all speech-responsive electrodes with non-significant (p > 0.05) 778 

correlation coefficients appear as white. 779 

 780 

This set of VOT-sensitive sites was then divided into two sub-populations based on the sign of 781 

each electrode’s correlation coefficient (ρ): voiced-selective (V+) electrodes (n = 33) had 782 

significant ρ < 0, indicating that shorter (more /b/-like; voiced) VOTs elicited stronger peak HG 783 

responses; voiceless-selective (V-) electrodes (n = 16) had significant ρ > 0, indicating that 784 

longer (more /p/-like; voiceless) VOTs elicited stronger peak HG responses. 785 

 786 

Across VOT-sensitive electrodes, the mean peak occurred 198.8ms after stimulus onset (SD = 787 

42.3ms). The semi-transparent grey boxes in Figures 1E and 2B/C illustrate this peak window 788 

(mean peak  1 SD). 789 

 790 

Analysis of VOT-sensitive electrodes. 791 

Encoding of voicing category. Electrodes that exhibit a monotonic relationship between 792 

VOT and peak HG amplitude should also be likely to exhibit a categorial distinction between 793 

shorter (voiced) and longer (voiceless) VOTs. We conducted two analyses that confirmed this 794 

expectation. In each analysis, we computed a nonparametric test statistic describing the 795 

discriminability of responses to voiced vs. voiceless stimuli at each electrode’s peak (z-statistic 796 

of Mann-Whitney rank-sum test) and then tested whether the population of test statistics for each 797 

group of electrodes (V- and V+) differed reliably from zero (Wilcoxon signed-rank tests). In the 798 
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first analysis, voicing category was defined based on the psychophysically determined category 799 

boundary (voiced: 0-20ms VOTs; voiceless: 30-50ms VOTs), which allowed us to include all 800 

VOT-sensitive electrodes (n = 49) in the analysis, including electrodes from participants who did 801 

not complete the behavioral task (3/7 participants).  802 

 803 

In the second analysis, a trial’s voicing category was determined based on the actual behavioral 804 

response recorded for each trial (irrespective of VOT), so this analysis was not dependent on the 805 

assumption that the VOT continuum can be divided into two categories based on the average 806 

boundary calculated across participants. This analysis examined the subset of trials with 807 

behavioral responses and the subset of VOT-sensitive electrodes found in the four participants 808 

with behavioral data (n = 27; 12 V- electrodes, 15 V+ electrodes) (Supplementary File 1). 809 

 810 

Given the strong correspondence between the categorically defined VOT stimulus ranges (0-811 

20ms vs. 30-50ms VOTs) and identification behavior (e.g., Figure 1C), the agreement between 812 

these results was expected. 813 

 814 

Significance bars for the two example STG electrodes in one participant (e1 and e2; Figure 1E) 815 

we computed to illustrate the temporal dynamics of category selectivity. In these electrodes, we 816 

conducted the test of between-category encoding (Mann-Whitney rank-sum test; first analysis) at 817 

every timepoint during the trial epoch (in addition to the electrodes’ peaks). Bars plotted for each 818 

electrode in Figure 1E begin at the first timepoint after stimulus onset where the significance 819 

level reached p < 0.005 and ends at the first point thereafter where significance fails to reach that 820 

threshold (e1: 140 to 685ms post onset; e2: 65 to 660ms post onset). 821 

 822 

Encoding of VOT within voicing categories. Because VOT-sensitive electrodes were 823 

identified via nonparametric correlation analysis (Spearman’s ρ) across all VOTs, the monotonic 824 

relationship between VOT and peak HG amplitude at these sites could be driven by the observed 825 

phonetic (between-category) encoding of voicing without any robust sub-phonetic (within-826 

category) encoding of VOT. To assess sub-phonetic encoding of VOT in the peak response 827 

amplitude of VOT-sensitive electrodes, we computed the rank-based correlation (Spearman’s ρ) 828 

between VOT and HG amplitude at each electrode’s peak separately for trials in each voicing 829 

category (0-20ms vs. 30-50ms VOTs). The statistical reliability of within-category encoding was 830 

summarized by computing a test-statistic (t) for every correlation coefficient (ρ0-20 and ρ30-50 for 831 

each VOT-sensitive electrode) as follows: 832 

𝑡 =
𝜌√𝑛 − 2

√1 − 𝜌2
 

 833 

 where n is the number of trials with VOTs in a given voicing category. The resulting set 834 

of test statistics (one per voicing category per VOT-sensitive electrode) served as the basis for 835 

the following analyses of peak within-category encoding. 836 

 837 

For each group of electrodes (V- and V+), we tested whether the encoding of VOT within each 838 

voicing category differed reliably from 0 (Wilcoxon signed-rank tests). We also conducted a 839 

Wilcoxon signed-rank test for each electrode group that compared the within-category 840 

correlation t-statistics for voiceless and voiced categories.  841 

 842 
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The above tests addressed the encoding properties of one electrode group at a time (either V- or 843 

V+ electrodes). Finally, a pair of Wilcoxon signed-rank tests combined across the full set of 844 

VOT-sensitive electrodes (n = 49) to summarize the within-category VOT encoding results 845 

within electrodes’ (1) preferred and (2) non-preferred categories. In order to conduct this 846 

“omnibus” test, we multiplied the correlation t-statistics for all V+ electrodes (for tests within 847 

each category) by -1. This simple transformation had the consequence of ensuring that positive 848 

correlation statistics always indicate stronger peak HG responses to VOTs that were closer to the 849 

endpoint of an electrode’s preferred category. 850 

 851 

Visualizations of within-category VOT encoding. To visualize the pattern of within-852 

category encoding of VOT in the peak HG amplitude of V- and V+ electrodes, we computed a 853 

normalized measure of the peak response amplitude to each VOT stimulus for each VOT-854 

sensitive electrode. Figures 2B and 2C show the full time series of the average ( SE) evoked 855 

responses of V- and V+ electrodes to all six VOT stimuli. To show encoding patterns across 856 

electrodes with different peak amplitudes, each electrode’s activity was normalized by its peak 857 

HG (grand mean across all VOTs). Figure 2D shows the amplitude of the average response 858 

evoked by a given VOT at a given electrode’s peak relative to the average response evoked by 859 

the other VOT stimuli, or peak HG (% of max), averaged across electrodes in each group (V-, 860 

left; V+, right) and participants ( SE). For each electrode, the mean HG amplitude evoked by 861 

each VOT at the peak was scaled and normalized by subtracting the minimum across all VOTs 862 

and dividing by the maximum across all VOTs after scaling.  863 

 864 

Neural response latency. The normalized HG responses used for Figures 2B/C were 865 

also used for the analysis of onset latency effects (Figure 3): HG (normalized) (Figures 2B/C) 866 

and HG (% of peak) (Figure 3A) are computationally equivalent. Neural response onset latency 867 

for an electrode was defined as the first timepoint at which its average response to a given VOT 868 

stimulus exceeded 50% of its peak HG (based on the peak of the grand average response across 869 

all VOTs). A bootstrapping with resampling procedure was employed to estimate the onset 870 

latencies of responses to different VOTs at each electrode and to assess any possible relationship 871 

between onset latency and VOT. During each sampling step in this procedure (1000 bootstrap 872 

samples), we computed the average time series of the normalized HG response to each VOT, the 873 

onset latency for the response to each VOT, and the nonparametric correlation (Spearman’s ρ) 874 

between onset latency and VOT. Wilcoxon signed-rank tests asked whether the population of 875 

bootstrapped correlation coefficient estimates for each electrode group reliably differed from 876 

zero. A Mann-Whitney rank-sum test compared the VOT-dependency of response onset latency 877 

between electrode groups. Color-coded horizontal bars below the neural data in Figure 3A show 878 

onset latency estimates (mean  bootstrap standard error) for responses to each VOT at two 879 

example electrodes. All electrodes were included in the analyses, but the bootstrapped 880 

correlation coefficient estimates for two V+ electrodes that were outliers (>3 SDs from median) 881 

were excluded from the visualized range of the box-plot’s whiskers in Figure 3B. 882 

 883 

Population-based neural classification. For each participant, we trained a set of multivariate 884 

pattern classifiers (linear discriminant analysis with leave-one-out cross validation) to predict 885 

trial-by-trial voicing category (/b/: 0-20ms VOTs vs. /p/: 30-50ms VOTs) using HG activity 886 

across all speech-responsive electrodes on the temporal lobe during a time window around the 887 

peak neural response. The peak window was defined as beginning 150ms and ending 250ms 888 
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after stimulus onset, selected based on the average and standard deviation of the peaks across all 889 

VOT-sensitive electrodes. We created four separate classifiers for each participant that allowed 890 

us to evaluate the contribution of amplitude and temporal structure to voicing category encoding 891 

(Figure 1F).  892 

 893 

To corrupt the reliability of any spatially-localized amplitude information about whether the 894 

VOT stimulus presented to a participant on a given trial was a /b/ or a /p/, the neural responses at 895 

every electrode on every trial were normalized so that the average response to a /b/ and the 896 

average response to a /p/ reached the same amplitude at each electrode’s peak. Specifically, for 897 

each electrode, we found its peak (timepoint where the grand average HG time series across all 898 

trials reached its maximum), calculated the mean HG amplitude across all trials for VOTs within 899 

each category at that peak, and divided the HG values for every timepoint in a trial’s time series 900 

by the peak HG amplitude for that trial’s category. This amplitude normalization procedure 901 

forces the average amplitude of the neural response across all trials of /b/ and of /p/ to be equal at 902 

each electrode’s peak, while still allowing for variation in the amplitude of any individual trial at 903 

the peak. 904 

 905 

To corrupt the reliability of any timing information during the peak response window about 906 

whether the VOT stimulus presented to a participant on a given trial was a /b/ or a /p/, the timing 907 

of the neural response on every trial (across all electrodes) was randomly shifted in time so that 908 

the trial could begin up to 50ms before or after the true start of the trial. Specifically, for each 909 

trial, a jitter value was drawn from a discrete (integer) uniform random distribution ranging 910 

between -20 to 20 (inclusive range) ECoG time samples (at 400 Hz, this corresponds to 50ms, 911 

with a mean jitter of 0ms), and the HG time series for all electrodes on that trial was moved 912 

backward or forward in time by the number of samples dictated by the trial’s jitter value. This 913 

temporal jittering procedure has the effect of changing whether the peak response window for a 914 

given trial is actually drawn from 100-200ms after stimulus onset, 200-300ms after stimulus 915 

onset, or some other window in between. 916 

 917 

Crucially, this procedure will misalign any reliable, category-dependent differences in peak 918 

timing or temporal dynamics within individual electrodes or temporal patterns or relationships 919 

that exist across distributed electrodes. For instance, the peak window overlaps with a window 920 

during which past work examining intracranial auditory evoked local field potentials found 921 

evidence of waveform shape differences between responses of single electrodes to voiced and 922 

voiceless stimuli (single- vs. double-peaked responses (see, e.g., Fig. 10 of 43). If similar 923 

temporal differences in waveform shape existed in the present high-gamma data, the temporal 924 

jittering procedure would detect a contribution of temporal information to decoding. Moreover, 925 

to the extent that the peak of a trial’s evoked high-gamma response occurs during or close to the 926 

peak window (either within one electrode [“local” temporal code] or across multiple electrodes 927 

in the same participant [“ensemble” temporal code]), the temporal jittering procedure would 928 

disrupt the reliability of this information to reveal the contribution of peak latency information to 929 

decoding accuracy. On the other hand, if the peak responses to stimuli from distinct voicing 930 

categories differ in the amplitude of the HG response at VOT-sensitive cortical sites, and if these 931 

differences persist throughout much of the peak window, then this temporal jittering procedure is 932 

unlikely to prevent the classifier from learning such differences. 933 

 934 



 

 25 

For each participant, we trained one classifier where neither amplitude nor timing information 935 

were corrupted (+Amplitude/+Timing), one where only timing information was corrupted 936 

(+Amplitude/-Timing), one where only amplitude information was corrupted (-937 

Amplitude/+Timing), and one where both were corrupted (-Amplitude/-Timing; here, amplitude 938 

normalization preceded temporal jittering). With each of these datasets, we then performed 939 

dimensionality reduction to minimize overfitting using spatiotemporal principal component 940 

analysis on the ECoG data for every electrode and all timepoints within the peak window 941 

(retaining PCs accounting for 90% of the variance across trials of all VOTs). Finally, training 942 

and testing of the linear discriminant analysis classifiers were conducted iteratively, holding out 943 

a single trial, training a classifier to predict voicing category using all other trials, and then 944 

predicting the voicing category of the held-out trial. For each participant and for each classifier, 945 

accuracy was the proportion of held-out trials that were correctly labeled. Wilcoxon signed-rank 946 

tests assessed and compared accuracy levels (across participants) achieved by the different 947 

models. 948 

 949 

Computational neural network model. 950 

Overview of architecture and dynamics. A simple five-node, localist neural network 951 

(Figure 2E) was hand-connected to illustrate how time-dependent properties of neuronal units 952 

and their interactions can transform a temporal cue into a spatial code (responses of different 953 

amplitudes to different VOTs at distinct model nodes). A gap detector received excitatory input 954 

from both a burst detector and voicing detector, as well as input from an inhibitory node that 955 

only received excitatory input from the burst detector. This represented an implementation of a 956 

slow inhibitory postsynaptic potential (slow IPSP) circuit(51, 52, 60, 61). A coincidence detector 957 

received excitatory input from the burst and voicing detectors. 958 

 959 

Network Connectivity. Weights between units in this sparsely connected, feedforward 960 

network were set according to a minimalist approach. All excitatory connections from the burst 961 

detector (to the inhibitory node, the gap detector, and the coincidence detector) had identical 962 

weights. All excitatory connections from the voicing detector (to the gap detector and the 963 

coincidence detector) had identical weights (stronger than from burst detector). Figure 2-figure 964 

supplement 1 indicates all nonzero connection weights between the network’s nodes, as 965 

illustrated in Figure 2E. 966 

 967 

Leaky-integrator dynamics. At the start of the model simulations, prior to the onset of 968 

any stimulus (𝑡 = 1), the activation level 𝑎𝑖(𝑡) of each node 𝑖 was set to its resting level (𝜌𝑖). 969 

Simulations ran for 100 cycles, with 1 cycle corresponding to 10ms. On each subsequent cycle 970 

(𝑡 ∈ [2,100]), activation levels of every node in the model were updated iteratively in two steps, 971 

as described in the following algorithm: 972 

(1) Decay: For every node 𝑖 with prior activation level 𝑎𝑖(𝑡 − 1) that differs from 𝜌𝑖, 𝑎𝑖(𝑡) 973 

decays towards 𝜌𝑖 by its decay rate (𝜆𝑖) without overshooting 𝜌𝑖. 974 

(2) Sum Inputs: For every node 𝑖, the total excitatory and inhibitory inputs are summed. 975 

This includes both model-external (clamped) inputs (i.e., from stimuli presented to the 976 

model) on the current cycle 𝑡 and model-internal inputs from other nodes based on their 977 

activation level on the prior cycle 𝑎𝑗(𝑡 − 1). Inputs from a presynaptic node 𝑗 can only 978 

affect the postsynaptic node 𝑖  if its prior activation 𝑎𝑗(𝑡 − 1) exceeds the presynaptic 979 

node’s propagation threshold ( 𝜃𝑗 ). Summation of model-internal inputs within 𝑖  is 980 
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weighted by the connection weights from the various presynaptic nodes (Figure 2-figure 981 

supplement 1): ∑ 𝑤𝑗𝑖 ∗ 𝑎𝑗(𝑡 − 1)𝑗 . The new activation level 𝑎𝑖(𝑡) is bounded by the 982 

node’s minimum (𝑚𝑖) and maximum (𝛭𝑖) activation levels, irrespective of the magnitude 983 

of the net effect of the inputs to a node. 984 

 985 

All activation parameters for all nodes are listed in Supplementary File 2. Minimum, maximum, 986 

and resting activation levels were identical across all units. Decay rates and propagation 987 

thresholds were identical across the burst and voicing detectors and the inhibitory node. The 988 

integrator units (gap and coincidence detectors) decayed more slowly than the other units, which 989 

could only affect other model nodes during one cycle. Activation levels in the coincidence 990 

detector had to reach a higher level (propagation threshold) to produce model outputs than in the 991 

gap detector, a difference which allowed the gap detector to register the fast suprathreshold 992 

response characteristic of slow IPSP circuits and allowed the coincidence detector to register a 993 

coincidence only when both burst and voicing were detected simultaneously or at a short lag. 994 

 995 

Model inputs. Two inputs were clamped onto the model in each simulation, representing 996 

the onset of the burst and of voicing (Figure 1A). The voicing input was only clamped onto the 997 

voicing detector at the onset of voicing. Supplementary File 3 illustrates vectors describing 998 

each of the simulated VOT inputs. 999 

 1000 

Sensitivity of model dynamics to variations in hand-tuned model parameters. 1001 

Although most of the parameters of the model are theoretically uninteresting and were set to 1002 

default levels (see Supplementary File 2), analysis of parameter robustness for the model 1003 

revealed four primary sensitivities based on the relative values set for certain specific parameters. 1004 

(1) and (2) below involve the propagation thresholds [𝜃] of the temporal integrator units (GAP, 1005 

COINC.), which allow the model to achieve gap and coincidence detection. (3) and (4) below 1006 

involve the rate of decay of activation [𝜆] of the temporal integrator units, which dictate where 1007 

along the VOT continuum the boundary between voicing categories lies. 1008 

(1) Propagation threshold [𝜽 ] of coincidence detector unit (COINC.): In our model, 1009 

coincidence detection is achieved by preventing the coincidence detector (COINC.) from 1010 

propagating an output in response to the burst until the voicing has arrived (hence 1011 

responding with a higher-than-minimum peak amplitude only when the voicing is 1012 

coincident with or arrives shortly after the burst). Thus, the propagation threshold for 1013 

COINC. (𝜃𝑪𝒐𝒊𝒏𝒄.) must be greater than the connection weight from the burst-detector to 1014 

COINC. (𝑤𝐵𝑢𝑟𝑠𝑡→𝐶𝑜𝑖𝑛𝑐.). 1015 

(2) Propagation threshold [𝜽 ] of gap detector unit (GAP): On the other hand, the 1016 

propagation threshold for the gap detector [GAP] (𝜃𝐺𝑎𝑝) must be less than the connection 1017 

weight from the burst-detector to GAP (𝑤𝐵𝑢𝑟𝑠𝑡→𝐺𝑎𝑝) to register the fast suprathreshold 1018 

response characteristic of slow IPSP circuits. 1019 

 1020 

The primary factor affecting the location of the boundary between voiced (short VOTs) and 1021 

voiceless (long VOTs) categories is the time-dependent rate of decay of postsynaptic potentials 1022 

in GAP and COINC. towards the unit’s resting activation level. 1023 

(3) Rate of decay of activation [𝝀] in COINC. in comparison to connection weights from 1024 

inputs to COINC.: For COINC., the boundary is the VOT value after which there is no 1025 

longer any additional boost to its peak amplitude from the initial burst, and this requires 1026 
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the decay rate of COINC. (𝜆𝐶𝑜𝑖𝑛𝑐.) and the connection weight from the burst-detector to 1027 

COINC. (𝑤𝐵𝑢𝑟𝑠𝑡→𝐶𝑜𝑖𝑛𝑐.) to be in balance. Increasing 𝜆𝐶𝑜𝑖𝑛𝑐.  or decreasing 𝑤𝐵𝑢𝑟𝑠𝑡→𝐶𝑜𝑖𝑛𝑐. 1028 

(independently) will move the boundary earlier in time. 1029 

(4) Rate of decay of activation [𝝀] in GAP in comparison to connection weights from 1030 

inputs to GAP: Similarly, for GAP, the category boundary is the VOT value before which 1031 

the remaining influence of the initial inhibition is still so strong that the arrival of voicing 1032 

input cannot exceed 𝜃𝐺𝑎𝑝 . Increasing 𝜆𝐺𝑎𝑝 , decreasing 𝑤𝐼𝑛ℎ𝑖𝑏.→𝐺𝑎𝑝 , or increasing 1033 

𝑤𝑉𝑜𝑖𝑐𝑖𝑛𝑔→𝐺𝑎𝑝 (independently) would each move the boundary earlier in time. All three of 1034 

these parameters are in balance in these hand-tuned parameter settings. 1035 

 1036 

It is critical to note that, for all of these cases where the hand-tuned parameter settings are in 1037 

balance, the balance is required for the model to achieve gap and coincidence detection and/or to 1038 

determine the position of the VOT boundary between categories. This was all the model was 1039 

designed to do. No parameters were hand-tuned to achieve the other response properties (e.g., 1040 

asymmetric within-category encoding, onset latency dynamics). 1041 

 1042 

Analysis of auditory evoked local field potentials. 1043 

Identification of key LFP peaks. We identified 3 peaks of the grand mean auditory 1044 

evoked local field potential (AEP), which were consistent with AEP peaks previously described 1045 

in the literature(41, 42): P (positive deflection approximately 75-100 ms after stimulus onset), 1046 

N (negative deflection approximately 100-150 ms after stimulus onset), and P (positive 1047 

deflection approximately 150-250 ms after stimulus onset) (see Figure 1-figure supplements 3 1048 

and 4). 1049 

 1050 

Bootstrapping approach. For each VOT-sensitive electrode (speech-responsive 1051 

electrodes whose peak high-gamma amplitude was correlated with VOT), a bootstrapping with 1052 

resampling procedure was used to estimate the latencies and amplitudes of each peak of the AEP 1053 

elicited by trials from each VOT condition. During each sampling step in this procedure (1000 1054 

bootstrap samples), we computed the average time series of the AEP for each VOT (Figure 1-1055 

figure supplement 4, panels I-L), the ECoG samples of the time series during each of three 1056 

time-ranges with the maximum (for positive peaks) or minimum (for the negative peak) mean 1057 

voltage values for each VOT, and six correlation coefficients (Pearson’s r between VOT and 1058 

amplitude/latency for each peak; see Figure 1-figure supplement 4, panels M-T). 1059 

 1060 

Details of peak-finding. P was defined as the maximum mean voltage from 0-150 ms 1061 

after stimulus onset, N was defined as the minimum mean voltage from 75-200 ms after 1062 

stimulus onset, and P was defined as the maximum mean voltage from 150-250 ms after 1063 

stimulus onset. To aid peak detection and enforce sequential ordering of the peaks, time ranges 1064 

for the latter two peaks (N, P) were further constrained on a per-sample basis by setting the 1065 

minimum bound of the search time range to be the time of the previous peak (i.e., the earliest 1066 

possible times for N and P were P and N, respectively). For a given sample, if a peak 1067 

occurred at either the earliest possible or latest possible time, it was assumed that the peak was 1068 

either not prominent or did not occur during the defined time range for this electrode/VOT, so 1069 

that sample was ignored in the analysis for that peak and any subsequent peaks. Because 1070 

correlation coefficients for each peak were computed over just 6 VOTs in each sample, exclusion 1071 

of a peak latency/amplitude value for one VOT condition resulted in exclusion of the all 1072 
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conditions for that peak for that sample. Finally, if more than 50% of the bootstrap samples were 1073 

excluded for a given peak in a given electrode, no samples for that electrode/peak pair were not 1074 

included in the analysis (see, e.g., P for e4 in Figure 1-figure supplement 4, panels H/P/T). 1075 

 1076 

Analysis of bootstrapped correlation estimates. For each remaining VOT-sensitive 1077 

electrode/peak pair, we determined whether or not the latency and/or amplitude of the peak was 1078 

significantly associated with VOT by evaluating whether the 95% confidence interval (95% CI) 1079 

across all included bootstrapped estimates of the correlation coefficient excluded 0 (taking the 1080 

highest density interval of the bootstrapped statistics) (Figure 1-figure supplement 3, panel B). 1081 

These exploratory analyses did not undergo multiple comparison correction. 1082 

 1083 

Detailed results of analysis of AEPs. The exploratory analyses of correlations between 1084 

VOT and the latency and/or amplitude of three peaks of the AEP in all VOT-sensitive electrodes 1085 

revealed four overall conclusions: 1086 

1. Comparison of the AEPs evoked by different VOTs shows that there exist associations 1087 

between stimulus VOT and the amplitude/temporal information in local field potential 1088 

(LFP). Among electrodes that robustly encode voicing in their peak high-gamma 1089 

amplitude (i.e., VOT-sensitive electrodes), these associations between VOT and LFP 1090 

features are complex and highly variable (Figure 1-figure supplements 3 and 4). 1091 

2. Replicating prior results regarding VOT encoding by AEPs (e.g., 43), we find that some 1092 

electrodes (e.g., e1 in Figure 1-figure supplement 4, panels E/I) exhibit temporal 1093 

encoding of VOT in the latency of various peaks of the AEP. In some electrodes, the 1094 

nature of this temporal code is straightforward (e.g., in e1, the latency of N is delayed by 1095 

~10ms for every additional 10ms of VOT duration; Figure 1-figure supplement 4, 1096 

panel M), but – more often – the relationship between VOT and peak latency is less 1097 

direct (Figure 1-figure supplement 4, panels N-P). 1098 

3. Among electrodes that encode VOT in their peak high-gamma amplitude, there exist 1099 

many more electrodes that do not encode VOT in these temporal features of the AEP 1100 

(Figure 1-figure supplement 3), supporting a prominent role for the peak high-gamma 1101 

amplitude in the neural representation of voicing and of VOT. 1102 

4. Besides the timing of the various AEP peaks, there also exist many electrodes that encode 1103 

VOT in the amplitude of those peaks (Figure 1-figure supplement 3). The encoding 1104 

patterns are often visually similar to the encoding patterns observed in high-gamma (i.e., 1105 

graded within the electrode’s preferred voicing category; see Figure 1-figure 1106 

supplement 4, panels Q-S). However, there are also many electrodes that do encode 1107 

VOT in their peak high-gamma amplitude but not in these amplitude features of the LFP 1108 

(Figure 1-figure supplement 3, panel B; compare, e.g., Figure 1-figure supplement 4, 1109 

panels D vs. H). 1110 

 1111 

Supplementary analyses of spatial patterns of VOT effects. Of the 49 VOT-sensitive 1112 

electrodes, 76% were located posterior to the lateral extent of the transverse temporal sulcus 1113 

(defined as y  6 in MNI coordinate space based on projection of the sulcus onto the lateral STG 1114 

in the left hemisphere). This is the same region that is densely populated with neural populations 1115 

that are tuned for other phonetic features (e.g., manner of articulation(8, 82)). Mann-Whitney 1116 

rank-sum tests showed that there was no significant difference in the localization of voiceless-1117 

selective (V-) versus voiced-selective (V+) electrodes along either the anterior-posterior axis (y-1118 
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dimension in MNI coordinate space; U = 342, z = -1.23, p = 0.22) or the dorsal-ventral axis (z-1119 

dimension in MNI coordinate space; U = 414, z = 0.29, p = 0.77). 1120 

 1121 

Although no regional patterns were visually apparent, we tested for hemispheric differences in 1122 

relative prevalence of VOT-sensitive sites or in voicing category selectivity. Of the seven 1123 

participants (all of whom had unilateral coverage), four had right hemisphere coverage (57%), 1124 

and these four patients contributed 28 of the 49 VOT-sensitive electrodes identified in this study 1125 

(57%) (see Figure 2A and Figure 1-figure supplement 2; Supplementary File 1). Pearson’s 2
 1126 

tests confirmed there was no difference in the rate of VOT-sensitive sites (2
(1) = 0.15, p = 0.70) 1127 

or in the proportion of VOT-sensitive sites that were selective for each category (2
(1) = 1.74, p 1128 

= 0.19) as a function of hemisphere. Thus, consistent with past ECoG work examining spatial 1129 

patterns of STG encoding for other phonetic features(e.g., 82), we found no evidence that the 1130 

observed spatial/amplitude code reflected any topographical organization nor any lateralized 1131 

asymmetries in the encoding of VOT, although data limitations prevent us from ruling out this 1132 

possibility entirely. 1133 
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FIGURE SUPPLEMENTS 1402 

 1403 

 1404 

 1405 
Figure 1-figure supplement 1. Identification behavior across all participants with behavioral data. A. 1406 
Mean ( SE across participants; n = 4 of 7 participants) percent /pa/ responses for each voice-onset time 1407 
(VOT) stimulus. Best-fit psychometric curve (mixed effects logistic regression) yields voicing category 1408 
boundary at 21.0ms (50% crossover point; see Methods for details). B. Behavior (mean  bootstrap SE) 1409 
for each individual participant (P1, P2, P6, P7). Total trials (n) listed for each participant (see 1410 
Supplementary File 1). Best-fit psychometric curves and category boundaries were computed using the 1411 
mixed effects logistic regression across all participants, adjusted by the random intercept fit by the model 1412 
for each participant. Voicing category boundaries were subject-dependent, with 3 of 4 participants’ 1413 
occurring between 20-30ms. P1 is representative participant in Figure 1C. 1414 
  1415 
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 1416 
Figure 1-figure supplement 2. Locations of all speech-responsive and VOT-sensitive electrodes in each 1417 
participant (P1-P7). P1 is representative participant in Figure 1D. Electrode color reflects strength and 1418 
direction of selectivity (Spearman’s ρ between peak HG amplitude and VOT) at subset of VOT-sensitive 1419 
sites (p < 0.05) for either voiceless VOTs (/p/; blue) or voiced VOTs (/b/; red). Electrode size indicates 1420 
peak high-gamma (HG; z-scored) amplitude at all speech-responsive temporal lobe sites. Maximum and 1421 
minimum electrode size and selectivity was calculated per participant for visualization. 1422 
  1423 
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 1424 
Figure 1-figure supplement 3. Analysis of evoked local field potentials reveals that some electrodes that 1425 
encode VOT in their peak high-gamma amplitude also exhibit amplitude and/or temporal response 1426 
features that are VOT-dependent. A. Grand average auditory evoked potential (AEP) to all VOT stimuli. 1427 
Evoked local field potentials (negative up-going) were averaged over all VOT-sensitive STG electrodes 1428 
for one representative participant (P1) (mean  SE, computed across electrodes). Three peaks of the AEP 1429 
were identified for analysis: 75-100 ms (P), 100-150 ms (N), and 150-250 ms (P) after stimulus onset. 1430 
B. Correlation coefficients (Pearson’s r) quantifying association between VOT and latency (top) or 1431 
amplitude (bottom) of each peak (P: left; N: middle; P: right) for each VOT-sensitive electrode for 1432 
which that peak could be reliably identified (see Figure 1-figure supplement 4 and Methods for details 1433 
of this analysis). Horizontal bars represent bootstrapped estimate of correlation coefficient (mean and 1434 
95% CI) for each electrode (blue: voiceless-selective; red: voiced-selective; electrodes sorted by mean 1435 
correlation value). Black bars around an electrode’s mean indicate that encoding of VOT by the 1436 
designated parameter (latency or amplitude of a given peak) was significant (95% CI excluded r = 0; 1437 
grey bars: not significant). Later peaks were reliably identified for fewer electrodes (P: n = 32 of 49 1438 
electrodes; N: n = 19; P: n = 15). 1439 
  1440 
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Figure 1-figure supplement 4. Complex and variable associations between VOT and 1442 
amplitude/temporal features of auditory evoked local field potentials (AEPs) exist in responses of 1443 
electrodes that robustly encode voicing in their peak high-gamma amplitude. A to D. Average high-1444 
gamma responses ( SE) to voiced (0-20ms VOTs; red) and voiceless (30-50ms VOTs; blue) stimuli in 1445 
four representative VOT-sensitive STG electrodes, including two voiceless-selective (A: e1, C: e3) and 1446 
two voiced-selective (B: e2, D: e4) electrodes, aligned to stimulus onset. Vertical bars indicate relative 1447 
scaling of high-gamma (z-scored) in each panel. The two leftmost electrodes (e1, e2) correspond to e1 1448 
and e2 in main text (e.g., Figure 1E). E to H. Average local field potentials ( SE) evoked by 1449 
voiced/voiceless stimuli in the same four electrodes, aligned to stimulus onset. Vertical bars (negative-1450 
upgoing) indicate relative scaling of voltage in each panel. The three peaks of the AEP that were 1451 
identified for analysis are labeled for each electrode (P, N, P; see Figure 1-figure supplement 3). For 1452 
a given electrode, peaks were omitted from this analysis if they could not be reliably identified across 1453 
bootstrapped samples of trials from all six VOT conditions (e.g., P for e4). See Methods for details. I to 1454 
L. Average local field potentials evoked by each VOT stimulus (line color) in the same four electrodes, 1455 
aligned to stimulus onset. M to P. Mean latency ( bootstrap SE) of each AEP peak for each VOT 1456 
stimulus for the same four electrodes. Mean bootstrapped correlation (Pearson’s r) between VOT and 1457 
peak latency shown for each peak/electrode. Q to T. Mean amplitude ( bootstrap SE) of each AEP peak 1458 
for each VOT stimulus for the same four electrodes. Mean bootstrapped correlation (Pearson’s r) 1459 
between VOT and peak amplitude shown for each peak/electrode. Note that negative correlations are 1460 
visually represented as rising from left to right. Correlation coefficients comprised the source data for 1461 
summary representations in Figure 1-figure supplement 3. 1462 
  1463 
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 1464 
Figure 2-figure supplement 1. Connection weights between model nodes. 1465 
  1466 
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LEGENDS FOR SUPPLEMENTARY FILES 1467 

 1468 

Participant Hem 
# trials 

(ECoG) 

# trials 

(behavior) 

# elecs 

(SR) 

# elecs 

(VOT) 

# elecs 

(V- / V+) 

P1 LH 234 230 78 12 5 / 7 

P2 RH 625 592 56 8 6 / 2 

P3 RH 339 0 50 7 1 / 6 

P4 LH 333 0 40 7 3 / 4 

P5 RH 119 0 47 8 0 / 8 

P6 RH 305 277 36 5 0 / 5 

P7 LH 110 105 39 2 1 / 1 
Supplementary File 1. Table of experimental summary statistics for each participant. Each participant 1469 
had ECoG grid coverage of one hemisphere (Hem), either left (LH) or right (RH). Participants completed 1470 
as many trials as they felt comfortable with. Number of trials per participant for ECoG analyses indicate 1471 
trials remaining after artifact rejection. Some participants chose to listen passively to some or all blocks, 1472 
so three participants have no trials for behavioral analyses. See Methods for description of inclusion 1473 
criteria for individual trials in ECoG and behavioral analyses. A subset of speech-responsive (SR) 1474 
electrodes on the lateral surface of the temporal lobe had a peak amplitude that was sensitive to VOT, 1475 
selectively responding to either voiceless (V-) or voiced (V+) stimuli. See Methods for details on 1476 
electrode selection. 1477 
 1478 

  activation parameter 

  𝒎 𝜧 𝝆 𝝀 𝜽 

m
o
d

el
 n

o
d

e Burst -10 10 0 1 0 

Voicing -10 10 0 1 0 

Inhibitor -10 10 0 1 0 

Gap -10 10 0 0.25 0.25 

Coincidence -10 10 0 0.25 1 
Supplementary File 2. Table of activation parameters for each model node. 𝑚 = minimum activation 1479 
level. 𝛭  = maximum activation level. 𝜌  = resting activation level. 𝜆  = decay rate. 𝜃  = propagation 1480 
threshold. 1481 
 1482 

V
O

T
 

0   BV             

10   B V            

20   B  V           

30   B   V          

40   B    V         

50   B     V        

  -2 -1 0 1 2 3 4 5 6 7 8 9 10 11 … 

  time post onset (cycles) 
Supplementary File 3. Table illustrating timing of 6 simulated model inputs. The table is sparse, 1483 
meaning that inputs to both Burst and Voicing detector units are 0 whenever a cell is blank. Inputs are 1484 
clamped onto either Burst or Voicing detector units (always with strength = 1) for a given simulated VOT 1485 
stimulus during the cycles that are labeled with a B or a V. 1486 
 1487 
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