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SUMMARY

To derive meaning from speech, we must extract
multiple dimensions of concurrent information
from incoming speech signals. That is, equally
important to processing phonetic features is the
detection of acoustic cues that give structure and
context to the information we hear. How the brain
organizes this information is unknown. Using data-
driven computational methods on high-density
intracranial recordings from 27 human participants,
we reveal the functional distinction of neural re-
sponses to speech in the posterior superior tempo-
ral gyrus according to either onset or sustained
response profiles. Though similar response types
have been observed throughout the auditory sys-
tem, we found novel evidence for a major spatial
parcellation in which a distinct caudal zone detects
acoustic onsets and a rostral-surround zone shows
sustained, relatively delayed responses to ongoing
speech stimuli. While posterior onset and anterior
sustained responses are used substantially during
natural speech perception, they are not limited to
speech stimuli and are seen even for reversed or
spectrally rotated speech. Single-electrode encod-
ing of phonetic features in each zone depended
upon whether the sound occurred at sentence
onset, suggesting joint encoding of phonetic fea-
tures and their temporal context. Onset responses
in the caudal zone could accurately decode sen-
tence and phrase onset boundaries, providing a
potentially important internal mechanism for detect-
ing temporal landmarks in speech and other natural
sounds. These findings suggest that onset and sus-
tained responses not only define the basic spatial
organization of high-order auditory cortex but also
have direct implications for how speech information
is parsed in the cortex.
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INTRODUCTION

A fundamental goal in the neurobiology of language is to under-

stand how acoustic information in speech is transformed into

meaningful linguistic content. Speech is thought to be serially

processed through the hierarchical structure of the auditory sys-

tem, from acoustic to phonemic to word and higher order repre-

sentations [1–5]. Accordingly, most traditional approaches have

beenmodel based, usually examining the relationship between a

well-defined stimulus feature and neural activity. For example,

the basic cochlear decomposition of different sound fre-

quencies is reflected in the tonotopically organized maps found

throughout the ascending auditory system, including the primary

auditory cortex and adjacent areas [6–9]. In contrast, in higher

order auditory cortex, including the superior temporal gyrus

(STG), there is evidence for the encoding of acoustic-phonetic

features [10–13]. While productive, these approaches often

require a priori knowledge of potential acoustic (e.g., spectro-

temporal) or linguistic (e.g., phoneme and syllable) features.

A major limitation of such model-based approaches is that we

do not yet fully know all the potential stimulus features. Debates

persist in the linguistics literature regarding the role of pho-

nemes, syllables, and other theorized cognitive representations

in the neural processing of speech [14–16]. Predicting neural

responses from reduced sets of features represents a major

challenge for characterizing high-order sensory cortices, where

neural responses are driven more strongly by complex natural

stimuli than their component features. Indeed, recent evidence

suggests spectrotemporal modulation tuning to speech in the

human STG, yet non-speech control stimuli designed specif-

ically to probe modulation features did not drive strong re-

sponses [12, 13].

For these reasons, we used an unbiased, data-driven

approach to discover the major patterns of variability in auditory

cortex to natural continuous speech. This model-independent

strategy allowed us to identify functional response types across

participants without imposing assumptions about which features

or dimensions of speech are most relevant or about their locali-

zation. We examined a large dataset of direct cortical recordings

from human participants with high-density intracranial record-

ings for surgical treatment of epilepsy. Participants listened to
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natural sentences while recordings were made from the STG,

middle temporal gyrus, and related prefrontal and motor areas

also involved in speech perception.

We first applied unsupervised non-negative matrix factoriza-

tion (NMF) to neural responses from 1,906 speech-responsive

electrodes across 27 participants listening to natural sentences.

NMF is a dimensionality reduction method that can be used to

uncover underlying statistical structure in data [17]. This method

has been used in neuroscience to study object representations

[18], identify brain tumors from spectroscopic imaging [19],

and to solve problems in automatic speech recognition [20].

Here, we use NMF to uncover profiles of neural responses that

are observed across patients listening to the same stimuli

without specifying the features (acoustic, phonetic, or otherwise)

assumed to be driving the response. We discovered two canon-

ical response profiles that divided speech-responsive cortex into

spatially distinct processing zones: a localized caudal zone

dominated by strong responsivity to stimulus onsets and a

more spatially widespread rostral zone that was not onset driven

and showed generally sustained activity throughout the stimulus.

The response profiles of STG electrodes were also seen in other

areas of speech-responsive cortex, including prefrontal andmo-

tor areas. Segmental phonetic features were represented locally

at single electrodes and were embedded equally in each zone.

Together, these regions define a striking pattern of temporal dy-

namics that govern the auditory processing of speech.

RESULTS

Human STG Is Partitioned into Two Zones with Distinct
Sentence-Level Response Profiles
Participants listened passively to 499 naturally spoken senten-

ces from the Texas Instruments and Massachusetts Institute of

Technology (TIMIT) acoustic-phonetic corpus, spoken by 402

male and female talkers. We applied an unsupervised soft

clustering algorithm, convex non-negative matrix factorization

(cNMF), on recordings from 1,906 electrodes across these pa-

tients, using the high gamma time series from all speech-respon-

sive electrodes throughout the recording session (see STAR

Methods). This analysis was designed to define the electrode

response profiles that were similar across patients and did not

rely on the identification of any acoustic or phonetic segmenta-

tion or knowledge of spatial location or anatomical area of the

recordings. Our analysis showed that two dominant response

profiles characterized the activity of the electrodes.

To understand the differences between response types, we

began by visually inspecting the single-electrode responses to

each sentence (Figure 1A; also see Figure S1). We observed a

striking difference in responses: one group showed very strong

responses to sentence onset, and the other appeared to have re-

sponses that were sustained or had broad peaks at various times

throughout the sentence. We then examined the response

across the entire population by plotting the cluster-weighted

average responses to single sentences, aligned by sentence

onset and sorted by length (Figure 1B). Because the cluster-

weighted time series is collapsed across all electrodes within a

cluster, only the overall shape of population activity is observed.

This ‘‘onset’’ and ‘‘sustained’’-like response profile is thus a gen-

eral characterization of the two populations of electrodes. At the
single electrode, a variety of response types were seen within

onset and sustained electrodes (Figure S1). Some onset elec-

trodes were very strongly responsive at sentence onset only,

whereas others responded strongly at the onset and then would

respond to other onsets within a sentence, though at a lower

magnitude. Sustained electrodes usually showed even peaks

throughout the sentence and did not exhibit the highly adaptive

profile of the onset electrodes.

Although our unsupervised analysis was designed to uncover

similarities in functional structure across brain areas and sub-

jects, we also wanted to examine whether these functional prop-

erties were spatially localized. The onset-sensitive cluster was

mainly localized to caudal or posterior STG, while the other

wasmore spatially distributed across rostral or anterior andmid-

dle STG (Figure 1C). This spatial segregation was not a require-

ment of our clustering algorithm, which was performed on all

subjects simultaneously without a priori information about elec-

trode locations. Spatial organization of response types was

clearly seen in both left (N = 14 subjects) and right (N = 13 sub-

jects) auditory cortices across all participants (Figure 1D). We

henceforth refer to these clusters as onset (for the first, more

caudal cluster) and sustained (for the second, more rostral clus-

ter). In addition to the large number of rostral sustained elec-

trodes, we also observed a limited number of sustained-type

electrodes posterior to the onset region; however, this was

more variable across individuals.

We quantified functional and anatomical clustering strength

using the silhouette index, which measures the degree of

within-cluster and between-cluster similarity. A silhouette index

near 1 indicates good clustering. Functional and anatomical

clustering within onset and sustained regions was significantly

higher than chance, suggesting that electrodes belonging

to each group were distinct processing zones (Figure 1E;

p < 0.001; Wilcoxon signed rank tests). Still, anatomical localiza-

tion was relatively stronger in the caudal onset electrodes,

whereas sustained responses were seen both anteriorly and sur-

rounding the onset area.

These clusters represent the major source of variance within

our dataset. Similar clustering was observed regardless of clus-

tering method (for example, K-means and other factor analytic

methods showed similar results; data not shown). Across all sub-

jects, the two clusters explained 16.9% of the variance in the

data. Adding more clusters explained only marginally more vari-

ance (Figure S2A). More importantly, within the additional clus-

ters, we observed the same onset and sustained response

types, mostly further subdivided according to response magni-

tude (Figures S2B, S2C, and S2D).

At a global level, these results suggest that distinct regions of

the human STG are sensitive to important temporal cues in

sentences, such as onsets and ongoing speech. However, we

also know from previous work that local encoding in STG is sen-

sitive to spectrotemporal and phonetic feature cues in speech

[11–13, 21]. To connect these findings, we next asked how pro-

cessing in each zone relates to other acoustic and phonetic

feature representations.

Acoustic Representations in Onset and Sustained Areas
We fit spectrotemporal receptive field (STRF) models to each

electrode separately to determine which combinations of
Current Biology 28, 1860–1871, June 18, 2018 1861
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Figure 1. The Superior Temporal Gyrus and Middle Temporal Gyrus Can Be Split into Two Spatially Distinct Regions Showing Differential

Temporal Responsivity to Sentences

(A) Example mean responses to sentences from single electrodes in the first (red) and second (blue) clusters, colored according to their NMF activation weights.

The waveform and spectrogram for each sentence are shown at the top. Electrodes in the first cluster (‘‘onset’’) showed a strong response at sentence onset,

sometimes followed by lower amplitude responses to other features within the sentence. Electrodes in the second cluster (‘‘sustained’’) showed differing

responses throughout the sentence and were not strongly selective for onsets. Sentence onsets and offsets are marked as dashed lines. Shaded error bars

indicate SEM.

(B) Average cluster time series across the onset and sustained populations reveals that the two main distinguishing features of the neural response are (1) fast

responses with strong activity at sentence onset and (2) slow responses, with weak responses at sentence onset and more sustained activity throughout the

sentence. Each subplot shows the responses to all overlapping sentences across all subjects projected onto the NMF bases and sorted by sentence length.

Sentence onset and offset are marked by dashed lines.

(C) NMF activation weights on electrodes from one example left hemisphere subject, colored as in (A). Onset responses were observed in caudal STG close to the

auditory core, whereas Sustained responses were found more rostrally. Outlined electrodes identify the electrodes plotted in (A).

(D) Activation weights for all left and right hemisphere subjects plotted on an average Montreal Neurological Institute (MNI) brain. Results from clustering on each

individual subject separately are shown in Figures S4 and S5.

(E) Evaluation of functional and anatomical clustering goodness of fit using the silhouette index (mean ± SE across subjects). Functionally, both onset and

sustained electrodes show tight clustering that was significantly higher than chance (onset: p = 9.33 10�6; sustained: p = 1.53 10�5; Wilcoxon signed rank test).

Anatomically, onset electrodes are close to one another in space and tend to be far away from sustained electrodes, as evidenced by a high silhouette index that

was significantly greater than a null shuffled distribution (p = 1.3 3 10�5; Wilcoxon signed rank test). Sustained electrodes are still significantly anatomically

clustered (p = 1.5 3 10�3; Wilcoxon signed rank test), though less so than the onset electrodes.

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figures S1, S2, S4, and S5.
spectrotemporal acoustic features would strongly elicit neural

responses from these areas. Both onset and sustained elec-

trodes were well described by these models (NMF weighted

average: rOnset = 0.26 and rSustained = 0.34). The weighted

average of STRFs from onset and sustained clusters is shown
1862 Current Biology 28, 1860–1871, June 18, 2018
in Figure 2A. Both regions exhibited variable spectral selectivity

(narrow and broad tuning) and integrated sound information over

relatively long timescales (up to 600 ms for excitatory and inhib-

itory response). However, their temporal response profiles were

substantially different. Onset electrodes strongly responded to
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Figure 2. Onset Electrodes Detect Con-

trasts and Show Selectivity to Fast Tempo-

ral Modulations Present in Speech

Sustained electrodes are longer temporal in-

tegrators and are insensitive to speech onsets.

(A) Onset (left) and sustained (right) weighted

average spectrotemporal receptive fields (STRFs).

Onset electrodes show short latency responses

and integrate over short temporal windows,

whereas sustained electrode responses are slower

and longer. Temporal responses collapsed across

frequency features are shown on the top; spectral

responses collapsed across time are shown at

right (mean ± SE).

(B) Example single electrode STRFs in onset (top)

and sustained (bottom) zones. Overall, onset and

sustained electrodes showed spectral selectivity

over similar ranges but differed in their temporal

response profile.

(C) Aligned responses to speech sounds after short

(<200 ms, left) and long (>200 ms, right) silences.

Onset electrodes respond robustly after long si-

lences, which can occur within a sentence or

before sentence onset. Sustained electrodes

respond to speech after short and long silences in

a sustained manner.

(D) Average onset and sustained temporal modu-

lation (top) and spectral modulation (bottom) po-

wer. Shaded error bars indicate SE across all

electrodes in each group. Onset electrodes show

higher temporal modulation selectivity, whereas

sustained electrodes showmarginally higher spectral modulation selectivity. Gray lines indicate significant differences at Bonferroni-corrected p < 0.05 (Wilcoxon

rank sum test).

(E) Onset, peak, and offset response latencies calculated from onset and sustained STRFs. Latencies were significantly greater in sustained compared to onset

electrodes (p < 0.001; Wilcoxon sign rank test), indicating longer temporal integration times for sustained electrodes.

*p < 0.05, **p < 0.01, ***p < 0.001.
silence followed by sound onset, consistent with onset sensi-

tivity observed at the sentence level. The excitatory part of the

STRF was short in duration, while preceded by a relatively long

inhibitory period. In contrast, sustained electrodes had a long-

duration excitatory component only. Single electrodes in onset

and sustained regions both show selectivity for low-, mid-, and

high-frequency content (Figure 2B). Some onset electrodes ex-

hibited broadband, non-selective onset responses, whereas

sustained electrodes showed more complex spectral tuning,

such as adjacent excitatory and inhibitory sidebands.

We were interested to know whether similar responses were

found within sentences after naturally occurring silent pauses

between phrases or for general onsets within sentences. We

plotted time-aligned onset and sustained responses to speech

following short (<200 ms) or long (>200 ms) silences (Figure 2C).

Strong onset responses occurred only after longer silences,

consistent with the STRFs described above. Longer silences

usually appeared at phrase boundaries in natural speech, and

these findings suggest a similar response profile that strongly

encodes these temporal landmarks in speech.

While low-level auditory areas perform a time-frequency

decomposition of incoming sounds, higher auditory areas are

often sensitive to more complex combinations of features,

including joint temporal and spectral amplitude changes or mod-

ulations [22, 23]. Speech comprehension relies on encoding a

relatively narrow set of spectral and temporal modulations within
the spectra of all natural sounds [24, 25]. We thus measured

selectivity to joint spectrotemporal modulations using the mod-

ulation transfer function (MTF), which describes whether these

electrodes follow changes in spectral content, temporal content,

or both [25]. In agreement with previous work [12, 13, 21, 26], we

found higher temporal and lower spectral modulation selectivity

in caudal onset electrodes, whereas rostral sustained electrodes

showed low temporal/high spectral modulation selectivity (Fig-

ure 2D). Onset electrodes had higher temporal modulation selec-

tivity across the whole range of possible temporal modulations

(Bonferroni corrected p < 0.05;Wilcoxon rank sum test), whereas

sustained electrodes had higher spectral modulation selectivity

around core spectral modulations (between �0.22 cycles

(cyc)/octave (oct) and 0.22 cyc/oct; gray bars indicate modula-

tions for which Bonferroni corrected p < 0.05; Wilcoxon rank

sum test).

The temporal integration profiles of brain areas can provide in-

sights as to the type of information that is being encoded. To

quantify the difference in latencies and temporal integration pro-

file in onset and sustained electrodes, we calculated the onset,

peak, and offset latencies of the excitatory component in each

STRF. Onset electrodes exhibited earlier onset, peak, and offset

latencies compared to sustained electrodes (p < 0.001; Wil-

coxon rank-sum test; Figure 2E), but the difference was most

pronounced at offset, where the difference in average offset

latencies was 98 ms. The duration of the excitatory response
Current Biology 28, 1860–1871, June 18, 2018 1863
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Figure 3. The Caudal Onset Zone Identifies Onsets in Natural, Continuous Speech

(A) Sound waveform and transcription for an example stimulus from a reading of the movie script for Forrest Gump. The stimulus contains multiple sentences and

phrases, with natural pauses in between utterances rather than defined silences as used for the Texas Instruments and Massachusetts Institute of Technology

(TIMIT) sentence-listening task. Parts of the sentence are shown in color for ease of alignment with the sentence waveforms.

(B) Spectrogram of the example stimulus shown in (A).

(C) Example activity for an onset (red) and a sustained electrode (blue) from SL04. The onset electrode activity demarcates acoustic cues for sentence and

phrase-level pauses, such as after ‘‘at nighttime’’ or after ‘‘all empty’’. Longer pauses, such as those in between the dialog, also elicit strong onset responses from

this electrode.

See also Figure S3.
was 138 ± 5 ms in onset and 211 ± 9 ms in sustained (mean ±

SD). These temporal properties are consistent with previous

findings [27–29] and have been interpreted as evidence of serial

processing within the ‘‘ventral stream,’’ with the idea that caudal/

posterior areas are lower order. However, the results here sug-

gest that the representations are fundamentally different be-

tween the zones. First, many onset electrodes are non-selective

in the spectral domain, whereas sustained electrodes respond to

spectrally complex sounds. Second, if the onset zone were low

level, it would be activated throughout the sentence, not primar-

ily driven by the onset. Third, and most importantly, how the two

zones integrate sound information over time is completely

different.

The evidence for onset-like and sustained-like activity was

found using responses to isolated TIMIT sentences, which are

arguably not as natural as continuous speech in, for example,

a narrative context. To determinewhether this result was specific

to TIMIT sentences, which were separated in time by 400-ms

pauses, we also looked at responses to continuous speech

taken from a reading of the movie Forrest Gump (see STAR

Methods). As with TIMIT, we found obvious onset and sustained

activity in the same electrodes (Figure 3). Onset electrodes re-

sponded at the onsets of sentences and phrases and after short

pauses. Sustained electrodes were found to respond throughout

these utterances, as before.

Onset and sustained responses were observed even when

stimuli were played backward or were spectrally rotated to re-

move phonetic and lexical content (Figures S3A and S3B).

Pure tone stimuli could also drive responses in onset, but not

sustained, electrodes (Figure S3C). Thus, although our STRF
1864 Current Biology 28, 1860–1871, June 18, 2018
analysis replicates our findings of high temporal modulation rep-

resentation in pSTG, themost parsimonious explanation of these

data appears to be that onset regions are onset selective rather

than simply selective for high temporal modulations. This also

explains our previous results whereby modulated ripple noises

did not elicit strong activity in STG beyond an initial onset

response [12].

Our acoustic analysis indicated that caudal onset electrodes

are onset detectors with varied spectral selectivity and short

temporal integration profiles and relatively high temporal modu-

lation selectivity, whereas rostral sustained electrodes are long

temporal integrators that are not sensitive to onsets and encode

spectral modulations important for speech comprehension [24].

Next, wewanted to examinewhether onset responseswere spe-

cific to sentence onset and how these acoustic properties

related to phoneme feature representations in each zone.

Local Phoneme Feature Embedding in Onset and
Sustained Zones
Phonetic features, such as plosive, nasal, and fricative, describe

how the sounds that define different categories of phonemes are

produced by the vocal tract [30]. Previously, we showed that the

human STG exhibited selectivity for phonetic features [11]; how-

ever, no consistent spatial map for these features was found

across subjects.

We speculated that plosives characterized by silence followed

by broadband burst (e.g., /ba/, /pa/, and /ta/) might be selec-

tively processed in the onset zone because of its short temporal

integration time, broadband spectral selectivity, and selectivity

for high temporal modulations. Conversely, we predicted that
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Figure 4. Onset and Sustained Electrodes

Exhibit Overlapping Acoustic-Phonetic

Feature Selectivity

(A) Example feature selectivity maps for one sub-

ject (SL04). Electrodes are colored according to

their acoustic-phonetic feature selectivity (non-

selective, nasal, vowel, plosive, or fricative). Onset

electrodes are denoted by the + symbol and sus-

tained electrodes by a circle. CS, central sulcus;

SF, Sylvian fissure; STS, superior temporal sulcus.

(B) The distribution of phonetic class selectivity is

similar across onset and sustained zones (p = 0.22;

chi-square test). The proportion of sites exhibiting

selectivity for each of the five phonetic features is

shown for onset (dark bars, left) and sustained

(light bars, right) sites.

(C) Example feature model weights for electrodes

with similar phonetic feature selectivity in onset or

sustained zones. Examples of vowel selectivity

and fricative selectivity are shown for onset and

sustained electrodes, as well as an onset non-

phonetically selective electrode that responded

primarily at sentence start.

(D) Spatial map for non-selective onset (+) or non-

selective sustained (d) sites. Only non-selective

(mostly onset) responses were localized to a

particular area of speech cortex—most of these

responses were in posterior STG.
sustained electrodes would be sensitive to spectral modulation

content in vowels. We fit a linear model to predict electrode ac-

tivity, this time employing a reduced binary feature matrix to

represent the presence or absence of phonetic features (nasals,

fricatives, plosives, high or front or low or back vowels, etc.) in

the sentence stimuli (see STAR Methods for details). We also

included a feature for sentence start in order to model the non-

linearities present in onset electrodes.

Contrary to our expectations, we observed overlapping pho-

netic feature representation in onset and sustained elec-

trodes—that is, we did not find segregation of consonants and

vowels in these areas. Instead, we found evidence of single-elec-

trode selectivity for all phonetic feature classes, vowels, nasals,

fricatives, and plosives, in both the onset and sustained zones.

Figure 4A illustrates this diversity of phonetic feature representa-

tion, with onset electrodes demarcated by + and sustained elec-

trodes by circles. Both onset and sustained show selectivity for

vowels, plosives, fricatives, and nasals. The proportion of sites

tuned to a particular phonetic feature did not significantly differ
Current B
across onset and sustained zones

(p = 0.22; chi-square test; Figure 4B). Ex-

amples of the feature-temporal receptive

fields are shown in Figure 4C. We saw ev-

idence of onset electrodes that jointly

encoded sentence start and particular

phonetic features, such as vowels or frica-

tives. Sustained electrodes encoded the

same features without an enhanced

response at sentence start.

The pronounced differentiation of sen-

tence onset feature representation for
onset electrodes was strongly spatially localized (Figure 4D).

Electrodes with a high response at sentence start were located

in the posterior STG, in a distinct region largely overlapping

with our previously defined onset zone. Mean onset weights

were strongly positively correlated with onset cluster 1 NMF

weight (Spearman rho = 0.87; p < 0.001) and strongly negatively

correlated with sustained cluster 2 NMF weights (Spearman

rho = �0.33; p < 0.001). We found no evidence for a reliable or

consistent spatial map of phonetic feature selectivity (data not

shown).

Altogether, these results demonstrate that phonetic feature

encoding is differentiated at the local scale of individual elec-

trodes, whereas temporal parameters (onset versus sustained)

are a global-scale organizational property that partitions the

STG. One important caveat is that we are unable to model

some neural changes that may result from natural co-articula-

tions, reductions, or elisions in speech, although by incorpo-

rating temporal delays into our feature-encoding models, we

can control for some temporal correlations within the stimuli.
iology 28, 1860–1871, June 18, 2018 1865



Because these feature models are based on average responses

to many instantiations of the same phonemes, this may reduce

our ability to infer the responses tomore variable pronunciations.

Responses to passive speech were also observed in the

sensorimotor cortex and inferior frontal gyrus, as shown by our

group [31, 32] and others [33–37]. In these electrodes, we again

found a separation of responses into onset and sustained

response types (see Figure S1C; SL04-ii and SL06-iv). Although

the overall magnitude of the cluster weights in this area was

lower than in the classical auditory areas, the response profile

for single electrodes within these regions was similar, as was

the overall structure of the STRFs (data not shown). Because

of their ability to be predicted by the spectrotemporal model

and their strong responses during listening, these responses

are likely auditory in nature, despite appearing outside of clas-

sical auditory sensory cortex. Onset and sustained distinctions

thus apply not only to the STG but also appear to be a funda-

mental organizing response feature across the entire auditory-

responsive speech cortex. The distribution of onset and sus-

tained response types is shown for all speech-responsive

electrodes for each subject separately in Figures S4 and S5. In

most single subjects, a distinct onset zone was localized to the

posterior STG, and while the sustained zone was usually

observed anteriorly, with some types of coverage, we also

observed multiple sustained zones anteriorly and posteriorly.

Decoding Sentence Onsets and Identity from Neural
Activity
Our encoding analyses showed that onset and sustained elec-

trodes show overlapping acoustic-phonetic feature selectivity

but that only onset electrodes show enhanced responses at sen-

tence and phrase onsets. We next investigated whether activity

in onset electrodes could provide an internal temporal reference

point for speech analysis. In speech, the onset is a critical feature

to initiating computation of the following acoustic and linguistic

information. To test this, we first used the neural activity pro-

jected into onset or sustained electrodes to determine the accu-

racy of detecting sentence onsets during single trials (see STAR

Methods). Critically, these neurally detected onsets did not rely

on any outside knowledge of the stimulus transcription or acous-

tics. Examples of detected onsets for single trials for four senten-

ces are shown in Figure 5A, where onsets detected from onset

electrode activity are shown in the middle panel and onsets de-

tected from sustained electrodes are shown as arrows in the bot-

tom panel. The spectrograms for these four sentences are

shown in the top panel. The dashed black lines represent the

true onset times from the stimulus transcription. Given the natu-

ral lag between stimulus presentation and a subsequent neural

response, neurally detected onsets usually occurred at a delay

compared to the actual stimulus onset. Critically, although onset

and sustained populations were defined using responses to

TIMIT sentences, using these populations to detect onsets in a

separately recorded naturally spoken narrative (from Forrest

Gump, as above) was extremely similar, with onset populations

able to precisely detect onsets of sentences and phrases (Fig-

ure S6A). We calculated the accuracy of onset detection from

onset and sustained populations across all participants, where

correct detection was specified as an onset being detected

within 0–150 ms of the actual stimulus onset. This window was
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chosen according to the average STRF peak excitatory

response across all sites (onset and sustained). The accuracy

of onset detection was significantly higher for the onset popula-

tion (for 150 ms window: mean ± SE: 61.8% ± 4.8%; max accu-

racy 98%) compared to the sustained population (mean ± SE:

5.1% ± 1.3%; max accuracy 17%; p = 4.4 3 10�4; Z15 = 3.52;

Wilcoxon signed rank test; Figure 5B). The error between

neurally detected onsets and the actual stimulus onset is shown

in Figure 5C, with the +150 ms boundary for ‘‘accurate’’ detec-

tions marked as a dashed line. Because one could argue that

the sustained electrodes might still be able to detect sentence

onsets but at a longer delay relative to the onset electrodes,

we also repeated this analysis with windows up to 600 ms.

Even with this window—arguably too long for a reliable onset de-

tector—results were similar, with onset electrodes always pre-

dicting onsets significantly better than sustained (Figure S6B).

Sustained electrode onset estimates were highly variable (Fig-

ure 5A), owing to the relative prominence of acoustic-phonetic

feature and other selectivity rather than strong responses at sen-

tence onset.

Having demonstrated that onset electrode responses are a

highly reliable marker for the start of each sentence, we next

wanted to show the implication of such a temporal ‘‘reference

frame’’ [38] for decoding the subsequent sentence information.

We performed a template-matching classification analysis [39]

after aligning single-trial neural responses to either (1) onsets de-

tected by onset electrodes, (2) onsets detected by sustained

electrodes, or (3) the actual stimulus onset (Figure 5D). This anal-

ysis yielded two interesting findings: first, that onset electrodes

can be used to align single-trial responses for decoding almost

as well as using the actual stimulus onset and, second, that sus-

tained populations, when appropriately aligned, provide higher

sentence classification accuracy when used in the template

decoder than onset electrodes and perform similarly to using

all electrodes simultaneously (Figure 5E). When onset electrodes

are used in the classifier with the true stimulus alignment, only

the beginning of the sentence can be classified and then perfor-

mance worsens to chance (middle panel in Figure 5E). These re-

sults were similar, though with poorer accuracy, when using

suprasylvian (inferior frontal or vSMC) electrodes for alignment

and classification (data not shown). This suggests that the strong

onset-selectivity observed in the onset region can provide a

marker of when speech starts, whereas the strong feature selec-

tivity and even response of sustained electrodes throughout

each stimulus allows for identification of which sentence was

heard. Such interactions between onset detectors and ongoing

spectral analysis may also be critical for parsing auditory scenes

in single- and multi-speaker environments [40, 41].

Encoding of Temporal Landmarks in Speech Dynamics
We identified distinct pathways of the speech-responsive cortex

that appear to respond differentially to onset and non-onset

components of speech and that integrate over short and long

timescales. These observations suggest that the auditory sys-

tem is highly sensitive to the temporal dynamics intrinsic to the

overall structure of phrases and sentences. To visualize how

onset and sustained populations contribute to the temporal dy-

namics of natural speech processing, we performed a cortical

state-space analysis [42–45], in which responses to sentences
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Figure 5. Detection and Alignment of

Ongoing Speech Information by the Caudal

Onset Zone

(A) Four example sentence spectrograms are

shown at the top along with onsets detected from

neural activity in onset (middle panel) and sus-

tained (bottom panel) zones in subject SL04. In

both the middle and bottom panels, the NMF-

projected high gamma data are shown as the thin

red (onset) or blue (sustained) lines. This repre-

sents the population activity across all onset or

sustained electrodes in this patient. The bold red

and blue lines show the 2-Hz low-pass-filtered and

half-wave-rectified signal. The derivative of this

low-pass-filtered signal is then taken and used for

onset detection (black line). Detected onsets are

indicated with black arrows. The dashed line in-

dicates the true stimulus onset. While onsets de-

tected from the caudal zone were very close to the

actual stimulus onset, onsets detected by the

rostral sustained zone occurred at random time

points during the sentence.

(B) Accuracy of detection from activity in onset

electrodes and sustained electrodes. The onset

zone showed significantly higher accuracy com-

pared to the sustained zone (Wilcoxon signed rank

test). Bars show mean ± SE (in light gray) across

N = 16 subjects with at least 10 repeats per sen-

tence (see STARMethods). Single points represent

accuracy for a single subject.

(C) Difference between stimulus onset and neurally

detected onsets in onset (red) and sustained (blue)

electrodes. Most onset zone-detected onsets fell

within <150 ms of the actual stimulus onset, as

shown by dashed line.

(D) Schematic of classification of single trials

matched to ‘‘template’’ responses calculated from

the average across all repetitions of a stimulus. Templates are shown as the average response of one electrode to 5 example sentences. For simplicity, only one

electrode’s activity is shown, although classification was performed on the single-trial population responses (see STAR Methods). Single trials were taken from

data aligned to the stimulus (black, representing a true alignment), onset zone electrodes (red), or sustained zone electrodes (blue). Alignments using sustained

zone-detected onsets were poor, as observed by the lack of a consistent response across trials. These single trials were matched to the templates using the

lowest Euclidean distance metric.

(E) Classification of sentence responses aligned to stimulus, onset activity, or sustained activity. Input to the classifier included activity from all electrodes (left),

onset electrodes (center), or sustained electrodes (right) aligned to onsets detected from the stimulus (black), onset (red), or sustained (blue). Classifiers were

calculated over a fixed 150-ms window starting at �0.5 s pre-onset and ending at up to 1.5 s post-onset. In all cases, alignment to the stimulus resulted in the

highest classifier performance. Using sustained electrode activity (aligned to onsets detected from the caudal onset zone) in the classifier resulted in higher

performance than using onset activity. Using sustained electrode activity to classify the stimulus showed similar performance to including all possible electrodes.

Chance classification is shown in gray. Shaded error bars indicate mean ± SE.

*p < 0.05, **p < 0.01, ***p < 0.001. See also Figure S6.
were projected onto NMF components. We first examined the

relationship between onset and sustained responses across all

anatomical sites (Figure 6A; Video S1). Immediately following

sentence onset, the state space trajectory was dominated by

onset electrode responses and then moved toward sustained

response types. For single sentences, the trajectories through

this state space show a stereotyped response profile. The sen-

tence ‘‘How on earth do you manage it?’’ shows a sweep into

the onset caudal zone, followed by coactivation of sustained

electrodes (Figure 6B). A natural sentence containing a substan-

tial pause in the middle (‘‘Then he—then what?’’) results in two

rotations through this state space (‘‘then he’’ in yellow hues;

‘‘then what?’’ in yellow and orange hues). Notably, whenmarking

the position of these features (for example, vowels, fricatives, or

plosives) within this state space, these features did not occupy a
defined region of the global dynamics represented here but

rather were distributed throughout the sentence trajectory (Fig-

ures 6C–6E).

DISCUSSION

Unsupervised clustering of human cortical responses to speech

identified a distinct onset region that was remarkably consistent

across 27 participants. This onset region represents both low-

level features found throughout the auditory system, such as on-

sets, but also higher level features, including acoustic-phonetic

features that are shared with the sustained region.We also found

that onset responses in onset electrodes could be used for de-

coding and alignment of ongoing speech signals and ap-

proached the accuracy of the true stimulus alignment (Figure 5).
Current Biology 28, 1860–1871, June 18, 2018 1867
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Figure 6. State Space Trajectories for Onset

and Sustained Electrodes Encode Temporal

Landmarks in Speech

(A) State-space representation for all electrodes

(n = 1,906) projected onto onset and sustained

population activity during single sentences. Each

trajectory within the space represents one sen-

tence. Each sentence starts and ends with silence

(marked in gray). The open circle indicates speech

onset and is followed by a colored line that pro-

gresses from light yellow to orange as time pro-

gresses in the sentence. Sentence offset ismarked

as the filled circle. Across all sentences, neural

activity follows a stereotyped sweep through the

caudal onset zone and then coactivating the sus-

tained zone.

(B) Single-sentence trajectories for a sentence

without pauses (left) and a sentence broken by a

brief pause (right). In the case of a pause, neural

activity traverses the space twice—once for each

segment of the sentence.

(C–E) Responses to phonetic features are widely

distributed within global state space trajectories.

State space trajectories are marked for the pres-

ence of vowels (C), fricatives (D), and plosives (E),

which, unlike sentence and phrase onsets, occupy

multiple regions of the cortical state space.

See also Video S1.
Additionally, neural activity in onset electrodes may be used to

temporally align information processed in sustained electrodes.

Together, our findings demonstrate a potential neural code

for demarcating the timing or position of important events in nat-

ural speech, thereby providing contextual information to the

segmental acoustic-phonetic feature processing locally within

each large region.

While onset and sustained properties are not speech specific,

and in fact occur in response to reversed and spectrally rotated

speech (Figure S3), these response types clearly have relevance

for segmenting acoustic boundaries important for parsing sen-

tences and phrases in natural speech. With our current stimulus

set, it is not possible to completely decouple acoustic and pho-

netic selectivity, because they are tightly correlated. Phrase

boundaries in our stimulus set may likely covary with the partic-

ular amplitude profile to which the onset electrodes respond,

which may not generalize to languages with other markers of

phrase boundaries. However, the frequency specificity of some

onset electrodes (see Figure 4) also points to a mechanism for

detecting onsets within sentences and phrases, which could

be important for speech segmentation in multi-talker and noisy

environments [46, 47]. The sustained responses seen for incom-

prehensible spectrally rotated and reversed speech stimuli indi-

cate that these sites may respond to fluctuations in temporal en-

velope, which has also been seen for high rates of envelope

fluctuations in primary auditory cortex [48] and is consistent

with reports of envelope following, even in the absence of linguis-

tic content [49], but may be enhanced during comprehension

[50].

Our work uncovered two major response types with onset and

sustained responsivity to sentences. Similar ‘‘phasic’’ and

‘‘tonic’’ response types have been observed in single-unit elec-
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trophysiological recordings throughout the auditory system,

including the temporal lobe auditory cortex [23, 51, 52], auditory

brain stem [53, 54], and even prefrontal cortex, where they may

be involved in decision making and object identification within

the ventral stream [2, 37, 51, 55]. Caudal onset responses are

likely related to the strongly adapting onset responses also

seen in animal models, while sustained responses are non-

adapting and more linear in the sense that they are not as sensi-

tive to temporal context [56]. Previous studies, however, have not

clearly documented the spatial segregation of these response

types in auditory cortex. Thus, it was a surprise to discover that

such response distinctions can be consistently regionalized at

a macro-anatomical level. To our knowledge, only limited fMRI

evidence has suggested transient and sustained cortical re-

sponses in humans [57–59], although those responses were

over much longer timescales (seconds and minutes), largely

confined to the temporal plane, and in the context of synthetic

stimuli or scanner noise rather than natural speech.

Many previous studies, including our own, may have over-

looked these properties in search of more canonical acoustic

and speech features, such as phonemes and syllables, in the

human STG. Here, the data-driven approach combined with

large-scale coverage, dense sampling, and real-time electrocor-

ticography (ECoG) recordings contributed directly to the novel

functional clustering observed here. Despite the limited previous

demonstration of functional organization, substantial anatomical

evidence exists for differentiating the caudal and rostral auditory

cortex [1, 9, 51, 60–62]. Anatomical studies show parallel topo-

graphic projections from the inferior colliculus to the medial

geniculate body [63]. These streams may be part of the ‘‘where’’

(caudal) and ‘‘what’’ (rostral) pathways described in non-human

primates [2, 51, 61, 64]. As for the ‘‘dorsal’’ versus ventral stream



model [65], we believe this to be a separate distinction. In our

data, the distinct onset versus sustained responders were found

within the ventral stream regions of STG and MTG. Dorsal

stream sites (e.g., motor cortex and supramarginal gyrus) can

also be classified as onset or sustained types but typically less

strongly than in ventral regions. The anatomical distinctions

between onset and sustained electrodes are primarily rostral-

caudal rather than dorsal versus ventral. While onset selectivity

defines the posterior zone, we also observe spectrotemporal

and acoustic-phonetic selectivity in this and the sustained

zone, indicating that both areas may be a part of the ventral

‘‘what’’ stream. In addition, cortical stimulation experiments

have shown that disrupting these areas likely disrupts perceptual

processing [66–68].

Our results build upon previous work showing that STG is

organized by its modulation sensitivity, with high temporal mod-

ulation selectivity and high temporal precision posteriorly and

high spectral modulation selectivity with low temporal precision

anteriorly [12, 13, 21]. However, these results go beyond tempo-

ral modulation selectivity in that they demonstrate a specific

sensitivity to onsets. Onsets by nature have high temporal

modulation content, but not all high temporal modulation sounds

are onsets. For example, reversed speech induces an onset

response at what was previously the offset of the sentence (Fig-

ure S3). Also, the dynamics of responses shown in the state

space trajectories (Figure 6) would not be predictable from tem-

poral modulations alone. This inherent asymmetry in responses

reflects a critical difference and clarification from previous find-

ings. While this property does not appear to be specific to

speech sounds, it clearly has amajor influence on the neural pro-

cessing of speech.

Our results suggest that this parcellation is a fundamental

aspect of auditory cortex organization and is likely not specific

to speech processing [69]. Nevertheless, these basic response

properties have potential implications for detecting the timing

of linguistically important events. Sensitivity to onsets can play

a critical role in parsing sentence and phrase boundaries using

acoustic cues, in combination with other high-level syntactic

cues [70]. The caudal onset detectors may be critical for auditory

scene analysis [71], because spectral energy from single

sources is generally temporally coherent [47, 72]. We observed

very few responses to offsets compared to onsets, in accor-

dance with neurophysiological and behavioral evidence that

sound onsets are given greater perceptual weight [73].

We describe a major division of the auditory cortex that sup-

ports multiple levels of spectrotemporal, phonological, and

linguistic representations. This defining property of auditory

cortical organization suggests how neural populations combine

dynamically to support speech perception and likely reflects a

general mechanism for processing natural sounds. While these

findings demonstrate the extraction of multiple dimensions of

acoustic-phonetic and temporal cues in speech, a major chal-

lenge is to understand how such information is fully integrated

at higher cortical levels to support language comprehension.

STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:
d KEY RESOURCES TABLE

d CONTACT FOR REAGENT AND RESOURCE SHARING

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B Participants

B Neural recordings

B Electrode localization

B Stimuli

B Electrode selection

B Unsupervised clustering of time series data

B Silhouette index

B Trajectory analysis

B Receptive field estimation

B Modulation transfer function analysis

B Response latency analysis

B Neural onset detection analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

d DATA AND SOFTWARE AVAILABILITY

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, one table, and one video

and can be found with this article online at https://doi.org/10.1016/j.cub.

2018.04.033.

A video abstract is available at https://doi.org/10.1016/j.cub.2018.04.

033#mmc4.

ACKNOWLEDGMENTS

The authors would like to thank Christoph Schreiner, Keith Johnson, Michael

Stryker, Brian Malone, Neal Fox, Yulia Oganian, and Matthew Leonard for

helpful comments on the manuscript. This work was supported by grants

from the NIH (F32 DC014192-01 Ruth L. Kirschstein postdoctoral fellowship

from the National Institute on Deafness and Other Communication Disorders

to L.S.H. and DP2-OD00862 and R01-DC012379 to E.F.C.). E.F.C. is a New

York Stem Cell Foundation-Robertson Investigator. This research was also

supported by The New York Stem Cell Foundation, The McKnight Foundation,

The Shurl and Kay Curci Foundation, and The William K. Bowes Foundation.

We gratefully acknowledge the support of NVIDIA Corporation with the dona-

tion of the Tesla K40 GPU used for this research.

AUTHOR CONTRIBUTIONS

L.S.H., E.E., and E.F.C. conceived of and designed the experiment. L.S.H.,

E.F.C., and others collected the data. L.S.H. and E.E. analyzed the data.

E.C. performed surgery and grid implantation. L.S.H., E.E., and E.F.C. wrote

the paper.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: December 14, 2017

Revised: March 4, 2018

Accepted: April 10, 2018

Published: May 31, 2018

REFERENCES

1. Rauschecker, J.P., and Scott, S.K. (2009). Maps and streams in the audi-

tory cortex: nonhuman primates illuminate human speech processing.

Nat. Neurosci. 12, 718–724.

2. Bizley, J.K., and Cohen, Y.E. (2013). The what, where and how of auditory-

object perception. Nat. Rev. Neurosci. 14, 693–707.

3. Wessinger, C.M., VanMeter, J., Tian, B., Van Lare, J., Pekar, J., and

Rauschecker, J.P. (2001). Hierarchical organization of the human auditory
Current Biology 28, 1860–1871, June 18, 2018 1869

https://doi.org/10.1016/j.cub.2018.04.033
https://doi.org/10.1016/j.cub.2018.04.033
https://doi.org/10.1016/j.cub.2018.04.033#mmc4
https://doi.org/10.1016/j.cub.2018.04.033#mmc4
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref1
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref1
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref1
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref2
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref2
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref3
http://refhub.elsevier.com/S0960-9822(18)30461-5/sref3


cortex revealed by functional magnetic resonance imaging. J. Cogn.

Neurosci. 13, 1–7.

4. Leaver, A.M., andRauschecker, J.P. (2010). Cortical representation of nat-

ural complex sounds: effects of acoustic features and auditory object

category. J. Neurosci. 30, 7604–7612.

5. DeWitt, I., and Rauschecker, J.P. (2012). Phoneme and word recognition

in the auditory ventral stream. Proc. Natl. Acad. Sci. USA 109, E505–E514.

6. Saenz, M., and Langers, D.R.M. (2014). Tonotopic mapping of human

auditory cortex. Hear. Res. 307, 42–52.

7. Moerel, M., DeMartino, F., and Formisano, E. (2012). Processing of natural

sounds in human auditory cortex: tonotopy, spectral tuning, and relation to

voice sensitivity. J. Neurosci. 32, 14205–14216.

8. Da Costa, S., van der Zwaag, W., Miller, L.M., Clarke, S., and Saenz, M.

(2013). Tuning in to sound: frequency-selective attentional filter in human

primary auditory cortex. J. Neurosci. 33, 1858–1863.

9. Kaas, J.H., and Hackett, T.A. (2000). Subdivisions of auditory cortex and

processing streams in primates. Proc. Natl. Acad. Sci. USA 97, 11793–

11799.

10. Howard, M.A., Volkov, I.O., Mirsky, R., Garell, P.C., Noh, M.D., Granner,

M., Damasio, H., Steinschneider, M., Reale, R.A., Hind, J.E., and

Brugge, J.F. (2000). Auditory cortex on the human posterior superior tem-

poral gyrus. J. Comp. Neurol. 416, 79–92.

11. Mesgarani, N., Cheung, C., Johnson, K., and Chang, E.F. (2014). Phonetic

feature encoding in human superior temporal gyrus. Science 343, 1006–

1010.

12. Hullett, P.W., Hamilton, L.S., Mesgarani, N., Schreiner, C.E., and Chang,

E.F. (2016). Human superior temporal gyrus organization of spectrotem-

poral modulation tuning derived from speech stimuli. J. Neurosci. 36,

2014–2026.

13. Schönwiesner, M., and Zatorre, R.J. (2009). Spectro-temporal modulation

transfer function of single voxels in the human auditory cortex measured

with high-resolution fMRI. Proc. Natl. Acad. Sci. USA 106, 14611–14616.

14. Hickok, G. (2014). The architecture of speech production and the role of

the phoneme in speech processing. Lang. Cogn. Process. 29, 2–20.

15. Sussman, H.M. (1984). A neuronal model for syllable representation. Brain

Lang. 22, 167–177.

16. Nearey, T.M. (2001). Phoneme-like units and speech perception. Lang.

Cogn. Process. 16, 673–681.

17. Ding, C., Li, T., and Jordan, M.I. (2010). Convex and semi-nonnegativema-

trix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32, 45–55.

18. Lee, D.D., and Seung, H.S. (1999). Learning the parts of objects by non-

negative matrix factorization. Nature 401, 788–791.

19. Ortega-Martorell, S., Lisboa, P.J.G., Vellido, A., Simões, R.V., Pumarola,
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB R2017b The Mathworks https://www.mathworks.com

Anaconda python v2.7 with MKL acceleration libraries Anaconda Cloud https://anaconda.org/anaconda/python

Freesurfer MGH Harvard https://surfer.nmr.mgh.harvard.edu/

img_pipe electrode localization software [74] https://github.com/changlabucsf/img_pipe

Other

Electrode grids AdTech https://adtechmedical.com
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Edward Chang

(edward.chang@ucsf.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
Participants included 27 patients (13M/14F, age: 34 ± 12 years) implanted with high-density subdural intracranial electrode grids

(AdTech 256 channels, 4mm center-to-center spacing and 1.17mm diameter) either chronically as part of their clinical evaluation

for epilepsy surgery, or in an acute intraoperative setting for tumor resection. All procedures were approved by the University of

California, San Francisco Institutional Review Board, and all patients provided informed written consent to participate. 14 subjects

were implanted with left hemisphere grids, and 13 subjects were implantedwith right hemisphere grids. Details of implantation (hemi-

sphere, sex, handedness, language dominance, and seizure focus) are in Table S1.

Neural recordings
Electrophysiological recordings were acquired at a sampling rate of 3051.8 Hz using a 256-channel PZ2 amplifier or 512-channel PZ5

amplifier connected to an RZ2 digital acquisition system (Tucker-Davis Technologies, Alachua, FL, USA). We recorded the local field

potential from each electrode, notch-filtered the signal at 60 Hz and harmonics (120 Hz and 180 Hz) to reduce line-noise related ar-

tifacts, and re-referenced to the common average across channels sharing the same connector to the preamplifier [31]. We then used

the log-analytic amplitude of the Hilbert transform to bandpass signals in the high gamma range (70-150 Hz), using 8 logarithmically

spaced center frequency bands and taking the first principal component across these bands to extract stimulus-related neural ac-

tivity [75–77]. High gamma signals were then downsampled to 100 Hz for further analysis. Signals were z-scored relative to the mean

and standard deviation of activity across each recording session.

Electrode localization
We localized electrodes on each individual’s brain by co-registering the preoperative T1MRI with a postoperative CT scan containing

the electrode locations, using a normalized mutual information routine in SPM12. Pial surface reconstructions were created using

Freesurfer. For visualization of electrode coordinates in MNI space, we performed nonlinear surface registration using a spherical

sulcal-based alignment in Freesurfer, aligning to the cvs_avg35_inMNI152 template [78]. This nonlinear alignment ensures that elec-

trodes on a gyrus in the subject’s native space remain on the same gyrus in the atlas space but does not maintain the geometry of the

grid. Full electrode localization procedures are described in [74].

Stimuli
TIMIT sentences

Participants listened passively to 499 sentences taken from the TIMIT acoustic-phonetic corpus [79], spoken by 286 males and 116

females from different regions of the United States of America. Most sentences were repeated 1-2 times; for the majority of patients

(23/27), a subset of 10 sentences was repeated 10-22 times. Stimuli were played through free-field speakers (Logitech), and presen-

tation was controlled using customMATLAB software on aWindows Laptop. Sentenceswere presented in pseudorandomorder with

0.4 s of silence in between each.
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Natural speech from ‘‘Forrest Gump’’

In addition to the TIMIT sentences, three participants heard naturally spoken sentences from a reading of the movie Forrest Gump

(referred to here as ‘‘Gump’’). In brief, it consisted of re-enacted natural speech samples from Robert Zemeckis’s Forrest Gump by

one male and one female talker. We included data from 116 dialog (4.5–19.9 s duration) speech samples (an example of one of these

is shown in Figure 3, and another in Figure S6). Each stimulus was presented at least one time to each participant. Phonetic transcrip-

tion was performed using forced alignment with the Penn Phonetics Lab Forced Aligner [80], followed by manual segmentation in

Praat. This dataset was used previously by our group to investigate decoding of words and phonemes from continuous, naturally

spoken speech [77].

Sentence control stimuli

In addition to natural sentences, a subset of subjects (n = 4) were presentedwith a set of control stimuli that were synthesized from 10

of the original TIMIT sentences. These 10 sentences were the subset that were repeated 10-20 times and included 5 male and 5 fe-

male speakers. Control conditions included time-reversed sentences and spectrally rotated sentences. Time-reversed sentences

were constructed by flipping the stimulus waveforms such that each sentence was played backward in time from its original version.

Spectrally rotated sentences were constructed according to methods described by Blesser [81].

Pure tone stimuli

For n = 5 subjects, we also played pure tone stimuli, synthesized as 50-ms duration 5-ms cosine ramped sine wave tones with mel-

spaced center frequencies that matched our sentence spectrograms. These center frequencies ranged from 74.5 Hz to 8kHz. Pure

tones were played at 3 intensity levels at 10 dB spacing, with the lowest intensity calibrated to be minimally audible in the hospital

room. Each pure tone frequency/intensity pair was repeated 3 times, and inter-stimulus intervals were jittered (range 0.28 sminimum

ISI – 0.5 s maximum ISI).

Electrode selection
We identified electrodes with robust responses to speech sounds that were well-predicted by a linear spectrotemporal model (r > 0.1

on a held-out dataset, see Receptive Field estimation). This metric was used rather than simply testing for significant responses dur-

ing speech compared to silence, since in practice the short time period of onset responses during speech sometimes led to false

exclusion of onset electrodes. This selection procedure resulted in a total of 1,906 speech-responsive electrodes across the 27

patients.

Unsupervised clustering of time series data
Weused convex non-negativematrix factorization (NMF) [17] to uncover functional areas based on correlated activity during a natural

speech listening task. In brief, we estimated the time series X [n time points x p electrodes] with the following factorization:

Xz bX = FGu;

where

F =XW

The Gmatrix [p electrodes x k clusters] represents the spatial weighting of an electrode on a given cluster, and theWmatrix [p elec-

trodes x k clusters] represents the weights on each of the electrode time series. Restricting F to be a convex combination of the elec-

trode time series allows us to compute a time series ‘‘centroid’’ – that is, the weighted time series XW for each cluster k will give us the

prototypical time series for that cluster (see [17] for proof of this concept, and Figure 1B for cluster time series).

We concatenated the z-scored time series for all 27 subjects and performed the clustering analysis on all subjects simultaneously

to find patterns of activity that were consistent across subjects. This resulted in a matrix X of 31,625 time points by 1,906 electrodes.

We restricted this analysis to the sentences that were heard by all subjects, which included a total of 113 sentences. Sentence stimuli

were aligned only across subjects; onset alignment across sentences (as shown in Figure 1B) was performed after clustering, not

before. We initialized the W matrix by first performing an eigenvalue decomposition on the unit-normed covariance matrix XuX, fol-

lowed by a varimax rotation and rectification. The G matrix was then initialized according to Ding et al., 2008 [82], followed by alter-

nating updates of W and G as described in Ding et al., 2010 [17] until convergence was achieved.

To evaluate the number of clusters, we calculated the percent variance explained when projecting the data onto the computed

NMF clusters. For this, we used the following equation:

R2 = 1� SSres

SStot

= 1�
X�

X � bX�2

X�
Xi � X

�2
We then plotted the additional percent variance explained for k = 2 to k = 32 clusters.
Current Biology 28, 1860–1871.e1–e4, June 18, 2018 e2



Silhouette index
To evaluate cluster separability, we employed the silhouette index s(i), which describes how well each electrode i is matched to its

own cluster compared to the non-match cluster. This takes the form:

sðiÞ= dacrossðiÞ � dwithinðiÞ
maxfdwithinðiÞ;dacrossðiÞg

where dacross(i) is the lowest average dissimilarity of electrode i to the cluster for which it is not amember (asmeasured by the squared

Euclidean distance), and dwithin(i) is the average dissimilarity of electrode iwith all other electrodes in the same cluster. The silhouette

index was calculated within each subject separately. For the functional clustering, we calculated the dissimilarity as the squared

Euclidean distance between the NMF activation weights G for each cluster. For anatomical clustering, the dissimilarity was calcu-

lated using the physical pairwise distance between electrodes within or across clusters.

Trajectory analysis
State-space trajectory analyseswere performed by projecting data from all electrodes onto NMFbasis functions. This is equivalent to

the calculation of the cluster time series ‘‘centroid’’ F, described above. For the Onset zone, this was the weighted time series XW1,

where only the first column of W was used, and for the Sustained zone, this was the weighted time series XW2, with only the second

column of W. For analyses that were restricted by subject, we used only the columns of X and rows ofW corresponding to electrodes

within the subject of interest, and calculated XW for those electrode subsets.

Receptive field estimation
To model acoustic and phonetic transformations in speech-sensitive cortex, we used linear encoding models to describe the high

gamma activity recorded at each electrode as a weighted sum of stimulus features over time. This model is known in the literature

as the spectrotemporal receptive field, and is widely used to describe selectivity for natural stimuli [83]. The models were of the form:

bxðtÞ=X
f

X
t

bðt; fÞSðf ; t � tÞ

Where x is the neural activity recorded at a single electrode, bðt; fÞ contains the regression weights for each feature f at time lag t, and

S is the stimulus representation. In this analysis, we used all sentences that a subject heard to the fit themodel. We estimatedmodels

using two representations of the data: (1) a spectrogram-based representation, and (2) a phoneme feature-based representation. For

the spectrotemporal stimulus representation, we used the mel-band spectrogram as in our previous work [11]. The mel band fre-

quencies ranged from approximately 75 Hz to 8 kHz, using an auditory filter bank with a cosine transform that gives a representation

of spectral power over time that mimics the filtering performed by the human auditory system [84].

For the phoneme feature representation, we constructed a binary phoneme feature matrix describing each sentence as a set of

features (1 for the presence of a feature, and 0 for its absence) describing phonetic or other linguistic content. Based on previous

work showing that the STG responds to phonetic features rather than single phonemes [11], we included features for sonorant, ob-

struent, voiced, back, front, low, high, dorsal, coronal, labial, syllabic, plosive, fricative, and nasal. To model response nonlinearities

at the beginning of sentences and after pauses, we also included a sentence onset feature to mark the first phoneme of each sen-

tence. In the selectivity maps shown in Figure 4, we collapsed across the relevant features for plosives, nasals, fricatives, and vowels

for ease of viewing.

We fit receptive fields using time delays of up to 600 ms in order to account for the longer responses observed in the rostral STG. b

weights were fit using ridge regression, where the ridge parameter was estimated using a bootstrap procedure in which the training

set was randomly divided into 80% prediction and 20% ridge testing sets. The ridge parameter was chosen as the parameter that

gave the best average performance across electrodes as assessed by correlation between the predicted and ridge test set perfor-

mance. The final performance of the model was computed on a final held out set not included in the ridge parameter selection. Per-

formance was measured as the correlation between the predicted response on the model and the actual high gamma measured for

sentences in the test set.

Modulation transfer function analysis
We calculated the modulation transfer function (MTF) of each STRF as the 2D Fourier transform of the STRF [25]. After taking the 2D

Fourier transform, values were squared, log transformed, and multiplied by 10 to convert units to power (dB).

Response latency analysis
To calculate the response latencies from the STRF, we calculated a temporal kernel by taking the mean across all frequencies in the

STRF matrix. We calculated the onset latency as the time at which the derivative of the temporal kernel reached its maximum. The

peak latency was the peak of this temporal kernel, and the offset latency was the time after the peak at which the derivative of

the temporal kernel was maximally negative.
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Neural onset detection analysis
To calculate onsets from the neural data without incorporating knowledge about the stimulus, we projected single trial population

high gamma responses onto the NMF components for the Onset and Sustained zone in each participant separately, using only par-

ticipants for which at least 10 repeats of a subset of 10 sentences were available (N = 16). Next, these projected high gamma data

were lowpass filtered at 2 Hz using a 3rd order zero-phase Butterworth filter and half-wave rectified to set all negative values to 0 (see

bold traces in Figure 5A).We then squared this signal and took the derivative to detect the timing of strong changes in the high gamma

signal (black traces, Figure 5A). The local maxima of this signal were detected and the top n peak times (where n = the number of

stimuli) were marked as the detected onsets (Figure 5A, arrows).

To determine whether neutrally detected onsets were accurate, we calculated the absolute value of the difference between the

actual stimulus onset (from the TIMIT transcription) and the detected onset. If the detected onset was within 0 – 150 ms of the actual

stimulus onset (where t varied from 50 to 600ms, in 50 ms steps), it was counted as a correct detection. This window was chosen

according to the average STRF peak excitatory response across all sites (onset and sustained). Accuracies were calculated as

the percentage of correct detections for each stimulus. Onset electrodes always outperformed the sustained electrodes in accuracy

even for windows up to 600ms. In our classifier analysis, we used these neutrally detected onsets aswell as the true stimulus onset as

inputs to a template-matching based classifier (as detailed in [39]). In brief, we took single trials from subjects for whom we had a full

set of the 10 sentence stimuli that were repeated 10 times, which included 5 sentences spoken by male speakers and 5 sentences

spoken by female speakers (n = 16 subjects). In these subjects, we used the Onset electrodes, Sustained electrodes, or the stimulus

to define single trial onsets as detailed above. Then, we calculated the Euclidean distance between each single trial population

response to a stimulus and a ‘‘template’’ from the average of repeated trials of that stimulus that did not include the single trial to

be matched. This classifier analysis was done using a sliding 150 ms window starting at 0.5 s before sentence onset. Electrodes

included in the population response were either all electrodes, only Onset electrodes, or only Sustained electrodes, aligned to either

the stimulus, Onset electrode onsets, or Sustained electrode onsets as specified in Figure 5. Chance performance was calculated by

creating 10,000 random confusion matrices for the 10 sentence stimuli using methods defined in [85]. We then calculated the 95%

confidence intervals for accuracies assessed from these randomly generated confusion matrices, which is shown in gray in

Figure 5C.

QUANTIFICATION AND STATISTICAL ANALYSIS

For data that deviated from normality, we used nonparametric Wilcoxon rank sum (for unpaired data) or signed rank tests (for paired

data). In some cases, a bootstrap t test was used. All tests were performed in MATLAB (vR2017b) or python (v2.7).

DATA AND SOFTWARE AVAILABILITY

Data and code available upon request to the Lead Contact, Edward F. Chang (edward.chang@ucsf.edu).
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