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SUMMARY
Vowels, a fundamental component of human speech across all languages, are cued acoustically by formants,
resonance frequencies of the vocal tract shape during speaking. An outstanding question in neurolinguistics
is how formants are processed neurally during speech perception. To address this, we collected high-density
intracranial recordings from the human speech cortex on the superior temporal gyrus (STG) while partici-
pants listened to continuous speech. We found that two-dimensional receptive fields based on the first
two formants provided the best characterization of vowel sound representation. Neural activity at single sites
was highly selective for zones in this formant space. Furthermore, formant tuning is adjusted dynamically for
speaker-specific spectral context. However, the entire population of formant-encoding sites was required to
accurately decode single vowels. Overall, our results reveal that complex acoustic tuning in the two-dimen-
sional formant space underlies local vowel representations in STG. As a population code, this gives rise to
phonological vowel perception.
INTRODUCTION

Vowels are a significant component of all the world’s languages,

and they play a critical role in our ability to comprehend

speech.1,2 Vowel sounds are produced when the vocal fold vi-

bration is unobstructed, allowing a clear passage of air through

the mouth, shaped by different positions of the jaw, tongue,

and lips. For instance, the vowel sound /i/ (as in ‘‘heed’’) is pro-

duced with the tongue close to the front of the mouth, whereas

/a/ (as in ‘‘had’’) is produced with the tongue further back. These

articulatory positions create distinct vowel sounds, distin-

guished acoustically by the value of the lowest two vocal tract

resonance frequencies, which are known as the first and second

formants (F1 and F2). Formants are considered the primary

acoustic cues to vowel identity.3

Sounds with different vowel identities can be very similar in

absolute formant values when produced by different speakers.

For example, /o/ (as in ‘‘hoed’’) produced by a speaker with a

long vocal tract (and thus low voice) could have the same abso-

lute formant values as /u/ (as in ‘‘who’d’’) produced by a speaker

with a short vocal tract (and thus high voice). As a result, the

accurate mapping of formant values to vowel identity requires

a normalization operation that computes formant frequencies
relative to the speaker’s voice.4 In sum, rapid and correct

mapping of formants to vowel identity relies on both the precise

identification of the formant frequencies as well as their interpre-

tation, given the speaker context.

In linguistics, the mental representation of formants, specif-

ically the independence of F1 and F2 and how this representation

supports vowel normalization, has been long debated. One

fundamental theory suggests that they are independently ex-

tracted and represented, mapping individual vowel sound seg-

ments onto coordinates in the two-dimensional F1-F2 space.5,6

To account for the speaker context, proponents of this theory

have advocated for an explicit normalization of both F1 and F2

values using features such as speaker pitch or higher formants.

Alternatively, it has been suggested that vowel identification

relies on the relationship between formants, such as the one-

dimensional distance between F1 and F2.7 This theory of vowel

perception is bolstered by the fact that the relationship between

F1 and F2 is more consistent across speakers than the indepen-

dent absolute values, thus implicitly accounting for the speaker

context.8,9 Examining neural responses to vowel sounds in the

human speech cortex provides us with a unique opportunity to

dissociate these theoretical models and elucidate the mecha-

nisms that underlie speaker-normalized vowel identification.
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Several studies have shown that neural activity in the human

auditory cortex is sensitive to vowel sounds and that it discrimi-

nates vowel identity in highly controlled acoustic contexts.10–12

In the primary auditory cortex (PAC), a tonotopically organized

area13 that is activated regardless of whether the presented

stimulus is human speech (e.g., pure tones), this sensitivity is

driven by narrow tuning to individual formant frequency

bands.14,15 By contrast, in the human speech cortex on the

lateral superior temporal gyrus (STG), most of the neural repre-

sentations are spectrally complex and broadband.14 Further-

more, the STG shows stronger activity in response to speech

and other complex natural sounds (e.g., music16,17) than in

response to other sound stimuli, and this activity is more closely

reflective of perceptual processing.18,19 It thus remains an open

question what neural representation in the STG underlies vowel

perception in continuous, natural speech.20–22 Specifically, it is

not yet clear whether formants are represented separately or in

combination or, furthermore, whether this representation is

tuned to narrow-band frequencies, possibly centered on single

vowel categories,23 or broad formant ranges.

To address this, we utilized high-density direct intracranial

recordings of neural activity from the surface of the human

STG. The highly resolved spatial scale afforded by this recording

technique was critical, as neighboring cortical sites that are just a

few millimeters apart can differ significantly in their spectral tun-

ing.24,25 The high temporal resolution of intracranial recordings

allowed us to examine neural responses at the temporal scale

of a single vowel sound. We used natural speech stimuli pro-

duced by a wide variety of speakers, which allowed us to record

neural responses to a large set of vowel sounds, spanning the

entire formant space.

With this approach, we addressed four primary research ques-

tions. First, we asked how neural responses recorded at single

electrodes in the STG were tuned to F1 and F2 in natural, contin-

uous speech. We analyzed two-dimensional formant-receptive

fields of neural responses to determine whether neural tuning

to F1 and F2 frequency ranges in the human speech cortex is

independent and to characterize the mathematical properties

of these tuning functions.26,27 Second, we asked how vowel

information can be extracted from the neural representation of

formants using a population decoding approach. Third, we

asked how and to what extent formant-receptive fields in the

STG are normalized for speaker properties. Finally, we used a

controlled set of artificial vowel-like sounds extending beyond

the natural vowel formant space with experimentally decorre-

lated F1 and F2 to definitively test the independence of formant

encodings.

We found that neural responses onmost single-electrode sites

in the STG were jointly tuned to both F1 and F2, resulting in

heightened sensitivity to a specific zone within the vowel formant

space. This sensitivity was nonlinear and sigmoidal along each of

the separate formant dimensions (F1 and F2). However, the loca-

tion of heightened sensitivity did not coincide with boundaries

between single vowels, andwe did not find single-electrode sites

with selectivity for a single vowel. Rather, single vowels could

only be decoded at the population level, when information

from differently tuned electrode sites was pooled together. Com-

parisons between neural responses produced by speakers with
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different vocal tract lengths showed that electrodes in the STG

contain normalized, not absolute, formant representations, dis-

tinguishing the STG from the narrow-band frequency tuning in

PAC. Although formant tuning on many active electrodes

showed inverse tuning to the two formants (e.g., tuned to high

F1 and low F2) when presented with natural speech, decorrelat-

ing the formants using a set of artificial vowels revealed a set of

electrodes with the same direction of tuning to both formants

(e.g., high F1 and high F2). This confirms that there exists a range

of formant-encoding types in the STG and that F1 and F2 are

neurally represented as coordinates in a two-dimensional

formant space rather than as a ratio or distance.

RESULTS

Cortical activity at single electrodes over human STG is
sensitive to vowel differences
In Experiment 1, Spanish monolingual patients (n = 8, Table S1)

listened to naturally produced Spanish sentences (Figure 1A)

while we recorded neural activity from the lateral surface of the

STG using high-density electrocorticography (ECoG) electrode

grids. The Spanish vowel system is well suited to study the vowel

representation for multiple reasons. Spanish has only 5 vowel

sounds (as opposed to, e.g., up to 20 in some English dialects28)

that span a large range of formant values. Thus, Spanish vowel

categories are clearly and easily separated in the acoustic

formant space: the median formant values for single vowel in-

stances correspond strongly with their vowel label (Figures 1B

and 1C; vowel clustering: median silhouette score = 0.099, per-

mutation test with 500 repetitions; p < 0.002). Moreover,

although F1 and F2 tend to be inversely correlated across lan-

guages, this is less the case for Spanish than for English (Spanish

r = �0.01, p = 0.31 in our stimulus set; English r = �0.21,

p < 0.0001 calculated from speech stimuli used in prior studies,

e.g., Mesgarani et al.29).

In our analyses, we focused on evoked response amplitudes in

the high gamma range (HGA). We found that evoked HGA re-

sponses on a subset of STG electrodes discriminated between

vowel categories (n = 116 of 359 speech responsive, range:

2–26 per participant, one-way peak F-statistic across vowel cat-

egories > 5, Figure 1E). Responses peaked at about 100–150 ms

post vowel onset, with different response magnitudes corre-

sponding to different vowels. For example, each of the three pro-

totypical example electrodes E1–E3 (Figure 1D) exhibited its

strongest response for a different vowel, with graded response

magnitudes for all other vowels.

Notably, none of these electrode responses shows a prefer-

ence for a single vowel. That is, we did not observe instances

where there was selectivity to a single vowel and no response

to all other vowel sounds. All subsequent analyses included elec-

trodes that discriminated between vowels (colored green in

Figure S1A).

Nonlinear monotonic tuning to vowel formant
frequencies in human STG
We first asked how vowel formants are represented by vowel-

discriminating populations. Specifically, we evaluated the

following three alternative hypotheses: narrow-band nonlinear
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Figure 1. Neural activity on single electrodes in bilateral human STG is sensitive to vowels

(A) Example Spanish stimulus sentence waveform (top), spectrogram (middle), and extracted formant trajectories (bottom). Vertical lines mark vowel onsets,

colored by vowel identity.

(B) Median frequency spectrum for a single speaker per vowel. Formant spectral peaks are marked by filled circles.

(C) Median F1 and F2 values across all vowel instances in our stimulus set.

(D) Differential average HGA responses to single vowel categories on three example STG electrodes. Error bars indicate standard error of the mean, gray shaded

area marks time window of averaging for electrode selection.

(E) Vowel discriminative electrodes for a single participant. Gray circles demarcate all grid electrodes, example electrodes from (D) are marked in red. See

Figures S1B and S1C for anatomical information across all participants.
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frequency tuning centered on vowel categories (Figure 2A, left

panel), linear monotonic encoding of an entire vowel formant

range (Figure 2A, middle panel), or nonlinear monotonic encod-

ing of formants within a limited dynamic range (Figure 2A, right

panel). In the case of narrow-band frequency tuning, we expect

neural populations to preferentially respond to a narrow range of

formant frequencies, as is typical for frequency tuning in primary

auditory cortices.14,30 Thismodel implies that themaximal neural

response could be located in the center of the vowel’s formant

range. By contrast, in the case of monotonic formant encoding,
we expect neural responses to increase across the range of

possible formant values, with the maximal response located at

the edges of the formant range. Although linear encoding implies

equal sensitivity to formant differences across the entire range,

nonlinear encoding would result in a heightened sensitivity to a

narrower range of formant frequencies and little to no sensitivity

to frequencies outside of this range.

We tested which of these models captured neural activity best

separately for every single electrode. First, to distinguish be-

tween narrow non-monotonic formant tuning and monotonic
Neuron 111, 2105–2118, July 5, 2023 2107
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encoding, we examined whether neural responses peaked at the

edges or in the center of the formant frequency range (Figure 2F).

Then, to discriminate between linear and nonlinear encoding, we

compared linear and sigmoidal models of neural responses us-

ing cross-validated R2. We estimated the neural response to

vowel formants using feature temporal receptive field (F-TRF)

modeling.31,32 Model features of interest were the spectro-tem-

poral content of the speech signal in the formant frequency

ranges. The model produced a regression weight time series

(beta weights) for each frequency bin. For the main analysis,

we extracted mean beta weights in a 50 ms window around

the peak in the beta-weight time course (125–175 ms) and fit

formant-encoding models to these values.

For the representative electrodes E2 (Figures 2B and 2C) and

E3 (Figures 2D and 2E), we found that responses were the stron-

gest toward one end of the vowel formant space, suggesting

monotonic encoding of formant frequencies. On E2, response

magnitudes and model beta weights increased with increases

in F1 but decreased with increases in F2. By contrast, in elec-

trode E3, beta weights were the strongest for high F1 and low

F2 values.

Across all vowel-discriminating electrodes, we found that neu-

ral responses peaked near the boundaries of the vowel formant

space, reflected in the bimodal distribution of maximal beta

values for both formants (Figure 2F; mixed-effects F1: beta =

�0.21, SE = 0.025, t(96) = �8.64, p < 0.001; F2: beta = �0.99,

SE = 0.082, t(96) =�12.1, p < 0.001). We thus focused our atten-

tion on the comparison between the linear and sigmoidal

encoding of vowel formants. Across electrodes, we found that

cross-validated R2 values were higher for the sigmoidal model

than the linear model on 82.4% of electrodes for F1 and 81.5%

of electrodes for F2. We found a mixture of preferences for

high and low formant values in both F1 and F2. This shows

that STG neural populations have limited dynamic ranges:

each local population represents a subspace of the vowel

formant space, such that a representation of the entire range

emerges across the entire population.

Finally, we wanted to characterize the extent to which both

formants are jointly encoded at a single electrode. Across elec-

trodes, we found an inverse correlation between tuning to F1

and F2 (Figure 2H; mixed-effects beta = �0.61, SE = 0.10,

t(103) = �5.90, p < 0.001; see Figure S2 for the anatomical loca-

tion of electrodes). That is, electrodes with a preference for high

F1 values also preferred low F2 values, and vice versa, as previ-

ously found for an English-language dataset.29 Here, we found

that this trend was driven by two main patterns. First, most elec-

trodes jointly encoded both formants (76 of the 105 electrodes),
Figure 2. Nonlinear monotonic encoding of vowel formant frequencies

(A) Three alternative hypotheses for encoding of vowel formants on single electr

(B and D) Example electrodes’ formant receptive fields.

(C and E) Formant tuning curves of the electrodes in (B) and (D). Red: decrease in b

values increase.

(F) Frequency of maximal beta weights in F1 and F2 ranges.

(G) Comparison between linear and sigmoid model fits for F1 (top) and F2 (botto

(H) Distribution of slopes for F1 and F2 across vowel-responsive electrodes, see

(I) Inset showing the total number of electrodes that encode F1 and F2 and the

quadrant in (H).
with a preference for negative tuning in F1 and positive tuning in

F2 (43 of the 105 electrodes). By contrast, although a small sub-

set of electrodes (n = 16) had negative tuning to both formants,

only a single electrode in our dataset had positive tuning to

both formants. This raises the following question: does the lack

of electrode sites with positive tuning to both formants reflect a

specialization of STG for speech sound harmonics? Alterna-

tively, it might be a confound of the limited formant frequency

ranges in natural speech. We will address this question with

Experiment 2 below.

Overall, these results show that neural activity at single-elec-

trode sites is only discriminative in a subspace of the overall

vowel formant space. However, across electrodes, the range

of formant tuning at the population level should be sufficient

to represent the entire vowel space with high fidelity. We

directly test this in the next analysis step using population

decoding.

Discrimination between vowel categories emerges at
the population level
We evaluated whether single vowel categories are represented

at the population level by comparing the accuracy of vowel de-

coding on different electrode subsets using a linear support vec-

tor machine (SVM) approach. First, we compared classifier ac-

curacies derived from single electrodes versus from the entire

electrode population (Figure 3A). We found that decoding from

the entire electrode population was significantly more accurate

when considering all pairwise comparisons (average improve-

ment: 2.2%–9.1% correct averaged across pairwise compari-

sons, t test showed a significant difference between all single

electrodes versus the entire population accuracies with

p < 0.0001; Figure 3A). Notably, the best single electrodes did

not necessarily show selective responses to a single vowel (Fig-

ure 3A, right panel).

The improvement in classification accuracy from a single

electrode to the population could be due to an increase in the

signal-to-noise ratio. However, this improvement may also

reflect complementary vowel encoding. That is, single elec-

trodes represent only select regions of the vowel formant range

in high detail, and as a result, pooling information across elec-

trodes with sensitivity to different select regions may be key to

decoding vowel categories across all pairwise comparisons.

To determine whether this was the case, we split electrodes

into the two dominant tuning subsets, namely F1�/F2+ and

F1+/F2� type electrodes. Formant-receptive fields averaged

across electrodes with the same directionality of F1/F2 tuning

(F1�/F2+: n = 36 electrodes; F1+/F2�: n = 15 electrodes;
in human STG

odes.

eta weight as formant values increase; blue: increase in beta weight as formant

m).

Figure S2 for anatomical maps. P value indicates significance of F1�F2 slope.

direction of their slopes, corresponding to the number of electrodes in each

Neuron 111, 2105–2118, July 5, 2023 2109



A

B

C

D

Figure 3. Emergent vowel representation at the population level

(A) Vowel decoding accuracy from the best single electrode per vowel (five unique electrodes across four subjects) as compared with the decoding accuracy

using all electrodes. All accuracies averaged across ten pairwise comparisons. Right: average high gamma amplitude (HGA) response to each vowel in five

electrodes used in single electrode decoding in the leftmost panel. Solid line corresponds to the vowel for which the selected electrode shows best average

accuracy, dashed lines correspond to all other categories. Gray shaded bar indicates empirical chance performance over repetitions. Error bars indicate standard

error of the mean across all pairwise decodings.

(B) Average formant receptive fields for electrodes with different tuning types and corresponding F1/F2 sigmoidal model R2.

(C) Decoding accuracy from five exemplary vowel pairs separated by electrode sub-group (best single electrode, each tuning type, both tuning types; p value

reported for significant comparisons between sub-group accuracies).

(D) Summary of decoding accuracy across vowel pairs (all pairwise statistics in Table S4).
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Figure 3B) suggested that each set would be critical for a subset

of comparisons. For instance, average receptive fields sug-

gested that F1+/F2� populations would be able to discriminate

between /a/, /e/, and /i/, whereas this would not be the case for

the F1�/F2+ population.

Decoding performed separately on the two subsets of elec-

trodes confirmed this prediction, as can be seen in Figure 3C

for five exemplary comparisons (p < 0.0001 for significant com-

parisons between decoding accuracies on different subsets; see

Table S4 for details of pairwise comparisons). Moreover, this

analysis clearly demonstrates that increased decoding

accuracies at the population level reflect the addition of informa-

tional content rather than increases in the signal-to-noise ratio.

This is because the accuracy of decoders based on the

best electrode subset and both electrode subsets together did

not significantly differ. Finally, Figure 3D summarizes the
2110 Neuron 111, 2105–2118, July 5, 2023
accuracies of all pairwise comparisons, showing that the two

subsets of electrodes discriminate different sets of vowel pairs.

The F1�/F2+ electrodes show significantly higher accuracy for

the /i/–/o/ and /o/–/u/ pairwise classification, whereas the F1+/

F2� electrodes show a higher accuracy for the /i/–/a/, /i/–/u/,

and /e/–/a/ classification. However, in conjunction, these two

electrode sets contain the complementary information neces-

sary to significantly discriminate between all vowel pairs.

Shifting dynamic ranges underlie the normalization of
vowel representation for the speaker vocal tract length
It iswell established that themappingbetweenvowel formantsand

vowel categoriesdependsona speaker’s vocal tract length,which

is correlated with voice pitch.4,33 We thus wanted to determine

whether the formant tuning of neural populations in STG shifts

with speaker voice quality during listening to continuous speech.
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Figure 4. Shifting dynamic ranges underlie normalization of vowel representation for speaker pitch

(A) Vowel formants shift between speakers with short and long vocal tracts (and thus high and low pitch).

(B) Formant normalization in two groups by high/low pitch reduces formant variability within vowel categories.

(C) Hypotheses for absolute (left) and pitch-normalized (right) encoding of vowel formants.

(D) Formant receptive field for an exemplary electrode.

(E) Formant frequency tuning for F1 (left) and F2 (right) on the same exemplary electrode, split by speaker pitch.

(F andG) Tuning curve inflection points (IPs), calculated separately for sentences with high and low speaker pitch, across all F1 (F) and F2 (G) encoding electrodes.

Note some electrodes included in (H) are located outside axis limits in (F) and (G). P values indicate significance of inflection point shift.

(H) IP shift for F1 and F2 on electrodes encoding both formants. P values indicate significance of inflection point shift.
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In line with previous work, we found that vowel formant fre-

quencies increase with speaker pitch (Figure 4A) and that

normalizing for speaker pitch reduces the formant variance

within vowel categories (Figure 4B). We hypothesized that STG

encoding of formants would reflect speaker-normalized rather

than absolute formant frequencies. To test how speaker pitch af-

fects the representation of vowel formants in human STG, we

refit F-TRF models separately on subsets of data with low and

high (>170 Hz) pitch levels and estimate the sigmoidal fits to

F1 and F2 model weights separately for each of the models. If

the STG representation of vowel formants reflects absolute
formant frequencies, we expect to see no difference in formant

tuning between the models (Figure 4C, left). By contrast, if STG

representations are normalized for speaker properties, we

expect to see a shift in STG dynamic ranges, matching the shift

in the vowel formant space between single models (Fig-

ure 4C, right).

Figures 4D and 4E show the tuning curves for low- and high-

pitch speakers on a single example electrode. For this exemplary

electrode, neural responsesshifted their dynamic ranges tohigher

frequencies in response to vowels produced by speakers with a

high pitch, in line with speaker normalization for both F1 and F2.
Neuron 111, 2105–2118, July 5, 2023 2111
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Toquantify themagnitudeandextentof this shift onSTGacrossall

electrodes with significant formant frequency tuning (n = 105), we

focused on electrodes with robust frequency tuning curves for

vowels produced by both high- and low-pitch speakers (F1 n =

25,F2n=45 [uniqueelectrodesn=58], 55.24%of theelectrodes).

We extracted the sigmoidal fit inflection points (IPs) for each sub-

set of speakers separately and assessed the difference in IP be-

tween models across electrode sites using linear mixed-effects

modeling (see STAR Methods for model details).

We found a systematic and robust shift of tuning curve IPs on

these electrodes toward higher formant ranges with increases in

the speaker pitch, with a most robust shift present on electrodes

with overall good model fits for single formants (mixed-effects

F1: pitch beta = 35.38, SE = 9.46, t(111) = 3.7, p < 0.001; F2: pitch

beta=95.03,SE=31.7, t(138)=2.99, p=0.003; seeTablesS2and

S3 for all fixed effects; Figures 4F and 4G). Remarkably, the

average magnitude of the IP shift across electrodes mirrored the

difference in the average formant frequency between high- and

low-pitch speakers (red lines in Figures 4F and 4G). Finally, we

also found that electrodes with a robust encoding of F1 and F2

(n = 16) also showed speaker normalization for both formants in

Figure 4H. Taken together, these analyses show that formant

normalization for speaker voicecharacteristics is ageneral feature

of formant-encoding neural populations in the human STG.

Vowel formant encoding emerges from the general
complex frequency tuning on STG
Our analysis of the representation of vowel formants in STG

raised two questions. First, are the opposite directions of prefer-

ence for F1 and F2 due to the limited range and covariance be-

tween F1 and F2 in natural speech? That is, when presented

with complex harmonic sounds with a broader range of F1 and

F2 values, will neural populations show sensitivity to formant

values with the same direction of tuning? Second, does each

formant value affect the neural responses independently (Fig-

ure 5A, top and middle row, joint independent encoding), or are

co-encoding neural populations additionally integrating across

F1 and F2, i.e., do responses to each formant depend on the

value of the other formant (Figure 5A, bottom, joint interactive en-

coding)? Notably, the qualitative patterns differ between inde-

pendent and interactive co-encoding: the latter shows a

u-shaped tuning along one of the diagonals. Finally, we wanted

to know whether STG encoding of the formant structure in

sounds would continue outside the boundaries of the human

vowel formant space. Alternatively, STG may contain separate

neural populations encoding the sound harmonic structure in

speech and non-speech frequency ranges.

To test these questions, we presented a group of ECoG pa-

tients (n = 8) with a set of isolated artificial vowel-like sounds

with F1 and F2 values inside and outside the natural vowel space

(black outline in Figure 5B; see Figure S3 for a perceptual rating

of stimuli). We report all results across English and Spanish

native speakers but note that no systematic differences between

native speakers of the two languages were found. Notably, this

task was language-independent, as vowels across languages

fall within the same space due to the physical constraints on

vowel production. We chose to use isolated harmonic sounds

rather than consonant-vowel combinations to reduce any effects
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of coarticulation and ensure that tokens outside the vowel

formant range could be perceived as non-linguistic. We found

robust evoked HGA responses to single stimulus tokens on a

subset of STG electrodes, which stereotypically peaked 150–

200 ms after the stimulus onset, in line with responses to natural

speech. We first tested whether electrodes responded differ-

ently to tokens within and outside the natural formant range

(black vs. gray in Figure 5B). Then, to model the encoding of

F1 and F2, we extracted peak HGA for each stimulus token

and evaluated the effects of F1, F2, and their linear interaction

(IA, F1 3 F2) on the peak HGA magnitude. Across all 8 patients,

analyses were focused on 160 electrodes (10–33 per patient), for

which the best linear regression model explained at least 10% of

the total response variance.

Figures 5C–5E show patterns of neural responses for three

exemplary electrodes. Electrode E1 responded equally to to-

kens inside and outside the natural formant range (Figure 5C,

left), with the strongest responses to high F2 values (Figure 5D,

left) and no effect of F1 or the interaction term (Figure 5D, bot-

tom). By contrast, responses on electrode E2 were highest for

the combination of low F1 and high F2 values, as supported by

the significant interaction term on this electrode (Figure 5D,

middle). Finally, electrode E3 responded more strongly to to-

kens outside the vowel formant range (Figure 5C, right), which

was due to a significant positive interaction effect (Figure 5D,

right). On all three electrodes, the pattern of responses is

generally smooth around the vowel space boundaries, suggest-

ing that any difference between the responses inside and

outside this space is due to spectral and not speech tuning.

Crucially, we found a high overlap between formant receptive

fields derived from the synthetic vowel tokens and from natural

speech stimuli, suggesting that both stimuli drive neural re-

sponses on STG to the same degree and in a comparable

manner (Figure 5E).

Comparison between formant encoding in synthetic
vowel sounds and natural speech
Across all electrodes, we found that the main effects of F1 and F2

explained the most unique variance on single electrodes (F1: R2

median = 0.07, max = 0.71; F2: R2 median = 0.07, max = 0.72),

with a minor but significant contribution of interaction terms

(F1 3 F2: R2 median = 0.03, max = 0.32; Figure 6A). Notably,

effect magnitudes for F1 and F2 were not correlated (r = �0.1,

p = 0.2, mixed-effects model t(158) = �1.48, not significant

[n.s.]; Figure 6B), suggesting that each contributes independently

to neural responses. By contrast, main and interaction effect

magnitudes were negatively correlated (r = �0.52, p < 0.001,

mixed-effects model t(158) = �6.4, p < 0.001; Figure 6C). That

is, electrodes with large interaction effects had little independent

contribution of F1 and F2 main effects and low R2 overall. This

suggests that encoding of F1 and F2 and integration across for-

mants are implemented by distinct STG populations with the

independent joint encoding of F1 and F2 dominating neural

response patterns.

In a second step, we asked whether the STG representation of

vowel formants is tailored to formant ranges found in natural

speech. Unlike in natural speech, in our synthetic vowel

stimuli, we found only a weak negative correlation between
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Figure 5. Vowel formant tuning emerges from

complex frequency tuning on STG

(A) Schematic of independent (top two rows) and interac-

tive encoding of F1 and F2 (bottom row).

(B) Stimulus design for synthetic vowel task; Top: example

token waveform. Bottom: F1 and F2 values task. See

Figure S3 for perceptual ratings of all stimuli.

(C) Mean responses (± SEM) to stimulus tokens that fall

within and outside the Spanish vowel space on three

example STG electrodes. Dark background marks peak

area for averaging and further analyses.

(D) Formant receptive fields (top) and linearmodel effect R2

(bottom) for the same example electrodes. Black outline in

formant receptive fields shows the vowel formant range in

continuous Spanish sentences in the natural speech task.

(E) Formant receptive fields derived from the DIMEx

corpus of Mexican Spanish34 for the same example

electrodes.
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Figure 6. Comparison between formant encoding in synthetic vowel sounds and in natural speech

(A) Effect R2 distribution across electrodes. Error bars indicate standard error of the mean.

(B and C) Correlation between effect R2 for the main effects of F1 and F2 (B) and between main effects and the linear interaction effect (C).

(D and E) Across all electrodes, the direction of effects for F1 and F2 is less correlated in the synthetic vowel task (D) than in the natural speech corpus (E).

(F) Model R2 for model fit on the entire vowel task stimulus set vs. only on stimuli with formants located within the natural formant space.

(G) R2 values for models fit on the full and reduced stimulus sets. Error bars indicate standard error of the mean. P value indicates significance of interaction of

model and tuning direction.

ll
Article
F1 and F2 model weights (r = �0.2, p = 0.01, mixed-effects

model: t(158) = �3.31, p = 0.001; Figure 6D). Importantly, the

range of tuning to different combinations of F1 and F2 values

(n: +/+ 36, �/� 44, +/� 28, �/+ 52 tuning direction) in our data

speaks in favor of the independent co-encoding of F1 and F2,

rather than differential joint encoding.

We hypothesized that this discrepancy was due to the natu-

rally limited range of F1 and F2 values in natural speech. To

test this, we reran our analyses on a subset of stimuli with for-

mants falling within the natural formant frequency range (as

marked in Figure 5B). Figure 6F shows the model R2 for full

and subset models by electrode formant tuning. We found that

in addition to the expected overall lower model R2 with a subset

of stimuli (main effect of model: b = �0.21, SE = 0.04, t(316) =

�5.94, p < 0.001) and marginally higher R2 values in electrodes

with opposite tuning to F1 and F2 (main effect of tuning direc-

tions: b = 0.16, SE = 0.08, t(316) = 2.02, p = 0.04), this reduction

was more pronounced for electrodes with the same direction of

tuning for both formants (interaction of model and tuning direc-

tion: b = �0.19, SE = 0.05, t(316) = �3.67, p < 0.001; Figure 6G).

Overall, this shows that populations with the same directionality
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of tuning for both formants are not as strongly activated by

vowels but rather are tuned to other harmonic sounds.

DISCUSSION

This study provides a comprehensive account of the represen-

tation of vowels in the human speech cortex on the lateral STG.

We found that vowel responses at local electrode sites in the

STG were best characterized by complex two-dimensional

receptive fields, defined by the first two formant frequencies,

and normalized for speaker voice characteristics. Along each

formant range (or receptive field axis), electrode sites showed

nonlinear, monotonic frequency tuning, with a high sensitivity

to a specific zone in the natural formant space. Because the

spectral location of this zone often did not correspond to any

single vowel, discrimination between vowel categories at sin-

gle-electrode sites was unreliable. However, when neural pop-

ulation response patterns were aggregated across electrode

sites, vowel categories could be decoded with high accuracy.

Finally, neural responses to artificial vowel-like sounds with

experimentally de-correlated F1 and F2 values showed that
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the complex tuning to formants in the STG independently rep-

resents F1 and F2 and extends beyond the natural vowel

formant range.

The primary objective of this study was to use neural data to

adjudicate linguistically informed theoretical models of vowel

representation. Two fundamental models of vowel representa-

tion have been proposed, one in which the mental representa-

tion of vowels is described by a one-dimensional relationship

between F1 and F2 (F1–F2)7 and another in which it is

described by a two-dimensional coordinate in space (F1,

F2).5,6 Although the neural responses to vowel sounds in this

and earlier studies29,35,36 seem to support the former theory,

the results from our synthesized vowel experiment suggest

that this interpretation is misleading because of the limited

range of formants in natural speech. By presenting subjects

with formant combinations that extended beyond the range

found in natural speech, we show that although most of the

electrode sites inversely encode F1 and F2 (high F1 values

and low F2 values, or vice versa), there exist electrode sites

with other joint encoding patterns (e.g., high F1 values and

high F2 values) or encoding to only a single formant. The fact

that the encoding of formants on individual electrode sites

spans all possible tuning combinations suggests that neural

populations on the human speech cortex represent F1 and

F2 as two distinct dimensions of the vowel space, rather than

a relationship between them.7,37

Our second objective was to determine how the neural encod-

ing of formants gives rise to the representation of vowel informa-

tion and speculate as to why the encoding of formants should

organize in this way.20,21 Although previous studies found cate-

gorical vowel representations in the auditory cortex,12,38 our

decoding analysis revealed no evidence for the categorical rep-

resentation of vowels at local electrode sites on the STG. That is,

electrode sites responded strongly to subareas of the two-

dimensional formant space, but these zones were not centered

on single vowel categories. However, population-level decoding,

where neural responses at single electrode sites were aggre-

gated, allowed for the robust decoding of vowel categories.

This is in line with an accumulating number of ECoG studies on

the neural representation of consonants that also reported that

specific discrete phonemes can only be reliably decoded at

the population level.24,25,29

Our decoding results add to the existing evidence that a

distributed representation of vowel sounds on the lateral STG

is organized as a heterogeneous spatial code.10,11,18,19,39 Elec-

trode sites that jointly encoded F1 and F2 belonged to two

spatially interspersed encoding types: those with the strongest

neural responses to high F1 and low F2 and vice versa. Together,

the two encoding types represented the complementary formant

information necessary to decode vowel categories. Since most

of the electrode sites were nonlinearly tuned to F1 and F2 (Fig-

ure 2), resulting in maximal neural responses at the edges of

the formant range, formant encoding on the STG is also likely

the basis for nonlinear, categorical vowel perception and

perceptual magnet effects.40–42

The third objective of this studywas to determine the degree to

which speaker normalization takes place on the lateral STG.

Building on previous work that used active, isolated word-level
tasks,33,43 we found that local electrode sites on the STG repre-

sented vowel formant frequencies normalized for the speaker

even when subjects passively listened to natural speech. These

results strongly support the notion that neural representations of

speech on the lateral STG are context-sensitive and contradict

recent findings suggesting that these representations reflect

the absolute frequency content of harmonic sounds.44 This

discrepancy may be in part due to the different spatial resolu-

tions of ECoG and EEG scalp recordings.45

To perform speaker normalization in natural speech, the audi-

tory system can draw on several distinct and often co-occurring

acoustic cues,46 such as the distributions of F1 and F2 for the

speaker,43 the ratio between F1 and F3,37 and the average F0

of the speaker (e.g., Johnson47). We did not experimentally

isolate these cues and thus are unable to make a definitive argu-

ment regarding the cue used by neural populations on the STG to

initiate speaker normalization. However, our results did show

that the degree of normalization on single neural populations

matched the distance between the average formants of

speakers with low and high pitches, differing from previous

ECoG studies that report only partial normalization.43 It is

possible that the larger magnitude normalization effects

observed in natural speech are due to the presence of co-occur-

ring acoustic cues versus only speaker F1 values that were

manipulated in the previous study.43

We can briefly speculate about the mechanisms that may ac-

count for the observed normalization effect.4 First, these effects

may be explained by the general auditory mechanisms that give

rise to adaptation and contrast-enhancing sensory representa-

tions in both speech and non-speech contexts48,49; examples

of such mechanisms include stimulus-specific adaptation and

gain control4,50,51 or a critical band behavior sensitive to the den-

sity of harmonics.52 It is also possible that speaker normalization

reflects an integration of spatially interspersed but functionally

distinct cortical areas encoding talker identity and might involve

other parts of the temporal cortex, such as the superior temporal

sulcus.10,11,53,54 We note that the possibilities listed here as

mechanisms for normalization processes are not mutually exclu-

sive and may both play a role in causing the effects we observe.

Finally, we were interested in understanding to what extent

STG representation of complex harmonic sounds is specialized

for human vowels. Although it is well established that vowel rep-

resentation in PAC relies on narrow-band frequency tuning of to-

notopically organized neural populations that are not specifically

tuned to human speech,55–57 the vowel representation in non-

primary auditory areas has not been fully explored. Here, we

show that vowel-discriminating neural populations in the STG

encode F1 and F2, with nonlinear, sigmoidal tuning along each

separate formant dimension. Notably, our artificial vowel data

showed that such representations also support the encoding

of other harmonic sounds in the environment, namely, formant

combinations outside those found in naturally produced vowels.

The specialization for different harmonic ranges may support

discrimination of non-speech complex harmonic sounds and

possibly underlies recent findings of distinct neural populations

for speech and music in this area.16,58

Importantly, this study relied on two passive listening para-

digms, one in which subjects listened to natural speech and
Neuron 111, 2105–2118, July 5, 2023 2115
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one in which subjects listened to synthetic sound stimuli. We

thus cannot exclude the possibility that task-dependent effects

modulated the recorded neural responses. It is known that

when subjects attend to and comprehend natural, meaningful

speech, speech-relevant receptive fields are enhanced,59 and

furthermore, that task demands and complexity critically alter

connectivity patterns across speech and language cortical

networks.60,61 Task-specific enhancement effects may reflect

top-down inputs from prefrontal areas62 via task-dependent

oscillatory phase alignment63 or selective enhancement of

receptive fields for task relevance (e.g., Atiani et al.64 and Fritz

et al.65). However, previous work comparing data from active

and passive listening paradigms found qualitatively similar

fMRI responses across task conditions in PAC and STG66 and

comparable receptive fields in ECoG,24 suggesting that the ef-

fect of an active versus a passive task paradigm is more likely

to fine-tune existing representations rather than alter them

completely.

The current study on the neural representation of vowel for-

mants in the human speech cortex leaves several important

questions open. First, we focused our analysis on discrete vowel

categories and static formant values, and as a result, we did not

explore the effects of vowel duration or formant temporal dy-

namics on neural activity in the STG.67–71 We believe that this

study lays the groundwork for the future exploration of the neural

encoding of such complex formant dynamics. Second, we did

not explicitly address the extent to which language experience

affects the neural vowel representation in the current work. Lan-

guage experience influences vowel recognition,72–74 and a

targeted paradigm is needed to address this. Finally, unlike

past findings of functional asymmetries in speech processing

across hemispheres,75–78 but in line with previous ECoG

studies,29,79 we did not observe hemispheric differences with

respect to any of our findings. This indicates at least some level

of bilateral involvement in vowel processing. However, alterna-

tive neuroimaging modalities with bilateral coverage in single

subjects are better suited to make claims about hemispheric

asymmetries.

In conclusion, the results of this study demonstrate the broad

and complex tuning of local electrode sites on the lateral STG to

the formants in natural vowel sounds. This tuning is best

described by nonlinear, two-dimensional formant receptive

fields that adapt to the speaker’s voice. Although most local

electrode sites jointly encode the first two formants, without a

strong preference for a single vowel, vowel categories can be

extracted from the neural responses if aggregated across the

population. Overall, we provide a comprehensive account of

the representation of vowels in non-tonotopic areas of the audi-

tory parabelt instrumental in the sensory processing of speech.
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(2004). DIMEx100: a new phonetic and speech corpus for Mexican

Spanish. Advances in Artificial Intelligence – IBERAMIA 2004 (Springer),

pp. 974–983.

85. Boersma, P., andWeenink, D. (2007). Praat: doing phonetics by computer.

[Computer Program]. https://www.fon.hum.uva.nl/praat/.

86. Kleiner, M., Brainard, D., and Pelli, D. (2007). What’s new in psychtoolbox-

3? Perception. (Abstract Suppl.) 36.

87. Brainard, D.H. (1997). The psychophysics toolbox. Spat. Vis. 10, 433–436.

88. Pelli, D.G. (1997). The VideoToolbox software for visual psychophysics:

transforming numbers into movies. Spat. Vis. 10, 437–442.

http://refhub.elsevier.com/S0896-6273(23)00266-0/sref50
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref50
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref51
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref51
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref52
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref52
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref52
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref52
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref53
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref53
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref53
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref54
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref54
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref54
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref54
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref55
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref55
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref55
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref56
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref56
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref56
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref56
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref57
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref57
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref57
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref58
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref58
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref58
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref59
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref59
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref60
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref60
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref60
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref60
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref61
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref61
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref61
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref62
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref62
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref62
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref62
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref63
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref63
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref63
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref64
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref64
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref64
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref65
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref65
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref65
https://doi.org/10.1002/jmri.21694
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref67
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref67
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref67
https://doi.org/10.1121/1.397863
https://doi.org/10.1121/1.397863
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref69
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref69
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref69
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref69
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref70
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref70
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref71
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref71
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref71
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref72
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref73
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref73
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref73
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref73
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref74
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref74
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref74
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref75
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref75
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref75
https://doi.org/10.1111/j.1460-9568.2005.04315.x
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref77
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref77
https://doi.org/10.1093/cercor/11.10.946
https://doi.org/10.1093/cercor/11.10.946
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref79
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref79
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref79
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref79
http://refhub.elsevier.com/S0896-6273(23)00266-0/opt3qYphDUZXI
http://refhub.elsevier.com/S0896-6273(23)00266-0/opt3qYphDUZXI
http://refhub.elsevier.com/S0896-6273(23)00266-0/opt3qYphDUZXI
http://refhub.elsevier.com/S0896-6273(23)00266-0/opt3qYphDUZXI
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref80
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref80
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref81
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref81
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref81
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref82
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref82
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref82
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref82
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref83
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref83
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref83
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref83
https://www.fon.hum.uva.nl/praat/
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref89
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref89
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref86
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref87
http://refhub.elsevier.com/S0896-6273(23)00266-0/sref87


ll
Article
STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Matlab 2021b Mathworks.com N/A

Custom code and data This paper Zenodo DOI for data: https://doi.org/10.5281/zenodo.7620900,

Zenodo DOI for code: https://doi.org/10.5281/zenodo.7813094

Imaging pipeline for coregistration

of electrodes to CT and MRI scans

Hamilton et al.80 https://doi.org/10.3389/fninf.2017.00062

Other

Human patient participants recruited

from neurosurgical patients at UCSF (see Table S1).

This paper N/A
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Edward F.

Chang (edward.chang@ucsf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The data that support the findings of this study are available on request from the lead contact. The data are not publicly available

because they could compromise research participant privacy and consent.

d All original code and summary data for figure replication has been deposited on zenodo.org and will be publicly available as of

the date of publication. Details are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study was approved by the University of California, San Francisco Committee on Human Research and all participants gave

informed written consent before experimental testing.

Fifteen (7 female) patients were implanted with 256-channel, 4-mm electrode distance, subdural ECoG grids as part of their treat-

ment for intractable epilepsy. Electrode grids were placed over the peri-Sylvian region of one of the patients’ hemispheres, as deter-

mined by clinical assessment. Eight Spanish-native speakers (5 male, 4 LH) with little to no knowledge of English participated in the

DIMEx corpus speech experiment. Eight participants (2 Spanish-native; 6 English-native, 7LH) listened to the synthesized vowel to-

kens of Experiment 2 (SOM Table S1). Participants in the synthesized vowel experiment also listened to the DIMEx corpus. Two

Spanish-native participants took part in both experiments.

All participants had normal hearing and left-dominant language functions.

Participant demographics and further implantation and resection details can be found in Table S1.

METHOD DETAILS

Data acquisition methods closely follow those reported in our previous work.14,81

Neural data acquisition
ECoG signals were recorded with a multichannel PZ2 amplifier, connected to an RZ2 digital signal acquisition system [TuckerDavis

Technologies (TDT), Alachua, FL, USA], with a sampling rate of 3052 Hz. The audio stimulus was split from the output of the presen-

tation computer and recorded in the TDT circuit, time-aligned with the ECoG signal. In addition, the audio stimulus was recorded with

a microphone and also input to the RZ2. Data were online referenced in the amplifier without any further re-referencing.
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Data preprocessing
All data analyses were based on the analytic amplitude of neural responses in the high gamma range (HGA; 70 to 150 Hz), which is

closely related to local neuronal firing and tracks neural activity at the temporal scales of natural speech.45,82 Offline preprocessing of

the data included (in this order) downsampling to 400 Hz, notch-filtering of line noise at 60, 120, and 180 Hz, extraction of the analytic

amplitude in the high-gamma frequency range (70 to 150 Hz, HGA), exclusion of bad channels, and exclusion of bad time intervals.

HGAwas extracted using eight band-pass filters [Gaussian filters, logarithmically increasing center frequencies (70 to 150 Hz) with

semi-logarithmically increasing bandwidths] with the Hilbert transform. The high-gamma amplitude was calculated as the first

principal component of the signal in each electrode across all eight high-gamma bands, using principal components analysis.

Bad channels were defined by visual inspection as channels with excessive noise. Bad time points were defined as time points

with noise activity in HG band, which typically stemmed from movement artifacts, interictal spiking, or non-physiological noise.

Last, the HGA was downsampled to 100 Hz, and z-scored relative to the mean and SD of the data within each experimental block.

All further analyses were based on the resulting time series.

Electrode localization
For anatomical localization, electrode positions were extracted from postimplantation computer tomography scans, coregistered

to the patients’ structural magnetic resonance imaging and superimposed on three-dimensional reconstructions of the

patients’ cortical surfaces using a custom-written imaging pipeline.83 Freesurfer was used to create a 3dmodel of the individual sub-

jects’ pial surfaces, run automatic parcellation to get individual anatomical labels, and warp the individual subject surfaces into the

cvs_avg35_inMNI152 average template.

Experiment 1: Continuous speech (DIMEx)
Stimuli and procedure

Participants passively listened to a selection of 500 Spanish sentences from the DIMEx corpus,34,84 spoken by a variety of native

Mexican-Spanish speakers. Data in this task were recorded in five blocks of approximately 7-min duration each. Four blocks con-

tained distinct sentences, and one block contained 10 repetitions of 10 sentences. Sentences were 2.5 to 8.03 s long and presented

with an intertrial interval of 800 ms. The repeated block was used for validation of temporal receptive field models (TRF; see de-

tails below).

All stimuli were presented at a comfortable ambient loudness (�70 dB) through free-field speakers (Logitech) placed approximately

80 cm in front of the patients’ head using custom-writtenMATLABR2016b (MathWorks, www.mathworks.com) scripts. Speech stim-

uli were sampled at 16000 Hz for presentation in the experiment. Participants were asked to listen to the stimuli attentively and were

free to keep their eyes open or closed during the stimulus presentation.

Stimulus spectrograms were calculated using the NSL toolbox (http://nsl.isr.umd.edu/downloads.html) for Matlab. Continuous

formant values were extracted using the praat software,85 https://www.fon.hum.uva.nl/praat/, ). We found that median formant

values discriminate between vowel categories with a high accuracy. Thus all depictions of vowel tokens in two dimensional formant

space reflect the token’s median formant values.

Electrode selection

Analyses included electrodes located on the STG, for which the per electrode peak HGA response (over a contiguous window of

50ms) after vowel onset significantly discriminated between vowel categories (using a one-way F-test and a non-corrected threshold

of p < 0.001). Final analyses included 122 electrodes, 2 to 26 within single patients (median = 12). Selected electrodes were equally

distributed across hemispheres, with no hemispheric differences in vowel discriminability or electrode location along the anterior-

posterior axis of the STG (Figure S2). For each of the below analysis, a subset of electrodes from this set were selected based on

relevant criteria.

Feature temporal receptive field (F-TRF) analysis

We fit neural data with a linear temporal receptive field (F-TRF) model with different sets of speech features as predictors. In this

model, the neural response at each time point [HGA(t)] is modeled as a weighted linear combination of features (f) of the acoustic

stimulus (X) in a window of 600 ms before that time point, resulting in a set of model coefficients, b1., d for each feature f, with

d = 60 for a sampling frequency of 100 Hz and inclusion of features from a 600 ms window (See previous work.29

HGAðtÞ =
Xd

k = 1

XF

f = 1

bðk; fÞXðf ; t � kÞ

Themodels were estimated separately for each electrode, using five-fold cross-validation (80% train, 20% test). The regularization

parameter was estimated using a 10-way bootstrap procedure on the training dataset for each electrode separately. Then, a final

value was chosen as the average of optimal values across all electrodes for each patient. For all models, predictors and dependent

variables were z-scored and scaled to between �1 and 1 before entering the model. This approach ensured that all estimated beta

values were scale free and could be directly compared across predictors, with beta magnitude interpreted as an index for the contri-

bution of a predictor to model performance.
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Predictors in the model included spectral ranges that spanned the 5-95th percentile of frequency values for the first two formants

for all vowels (F1: 250 - 800 Hz, F2: 1000 - 2500 Hz), as well as sentence onsets, vowel onsets, and predictors for timing and magni-

tude of peakRate, a marker of rising envelope edge dynamics (for peakRate feature structure see Oganian and Chang81). Vowel and

sentence onset predictors were timed to onsets of the respective phonemes in the speech.

Linear and sigmoidal model comparisons on F-TRF betas

Linear and sigmoidal curves were fit to the mean beta weights around the beta peak in a 600 ms window (125-175ms), as estimated

by the F-TRF model described above. Curve fitting for all model types was leave-one-out cross-validated (16 and 26 times for F1

and F2 bins respectively). This allowed us to directly compare models with different numbers of free parameters. Corresponding

model R2 values were calculated based on the average error derived from the cross-validated predictions. R2 values were calculated

as 1 - RSS/SST, where RSS is defined as the residual sum of squares and SST is defined as the total sum of squares. Note, this co-

efficient of determinationmeasure (R2) could be negative if the regression predictions are further from the true value than amodel that

predicts the sample average. Bayesian Information Criterion (BIC) was used to validate the R2 values. According to this metric, the

sigmoidal model outperformed the linear model on 31.4% of electrodes for F1 and 25.7% of electrodes for F2. To test for bimodality,

effects of tuning direction on the frequency value of maximal beta weight were assessed using linear mixed effects modeling with

fixed effects of tuning direction, and random intercepts and slopes for subject and electrode (Maximal Beta Position �Tuning

Direction + (1 | Subject) + (1 | Electrode:Subject)).

Vowel decoding

Binary SVM linear classifiers (using pre-built function fromMatlab Statistics andMachine Learning Toolboxes) were trained on neural

data to distinguish pairs of vowel (all possible pairs of the five Spanish vowel categories, /a/, /e/, /i/, /o/, /u/) from a fixed window of

50 ms around the time point of peak discriminability between vowels (centered at approximately 150 ms post-vowel onset). Four

types of classifiers were constructed: population level classifiers, two sets of population-subset classifiers, and single electrode

classifiers. Population level classifiers were trained and tested on the output of principal component analysis (PCA) applied to neural

activity from a population of electrodes (n = 54) spanning 4 subjects with sufficiently overlapping stimulus sets. To ensure that the

pairwise decoding accuracy was comparable across pairs, data were subset to contain equal numbers of samples per vowel, equal

to the number of samples for the least frequent vowel (/u/) resulting in approximately 110 samples per vowel. Population-subset clas-

sifiers were also trained and tested on the output of a PCA and included electrodes with either F1+/F2- (n = 40) or F1-/F2+ (n = 14)

individual tuning profiles derived from previous analysis. Single electrode classifiers were trained and tested on the neural activity

recorded at single electrodes (n=105). Each classifier was 5-fold cross-validated and reported accuracy measures were averaged

across each of the cross-validation sets. Significance testing was based on classification accuracies for data with permuted vowel

labels, based on 50 permutations.

Speaker normalization

To determine the extent to which cortical responses to formants depend on speaker physiology, separate F-TRF models were were

fit to neural data using subsets of speakers with an average fundamental frequency across the sentence of either less than or greater

than 170 Hz, using the same predictors as the model described above. A total of 233 sentences (4840 vowel instances) were used in

the low pitch speaker model and 267 sentences (5750 vowel instances) were used in themodel corresponding to high pitch speakers.

Curve fitting was performed on the speaker subset F-TRF model beta weights in the same way as described above. Inflection point

shifts were calculated using the parameters derived from each of the F-TRF model types.

Effects of speaker subset on inflection point shift was determined using linear mixed effects modeling (using the Matlab Statistics

and Machine Learning Toolbox) with fixed effects of model R2, speaker subset, and their interaction, and random intercepts and

slopes for speaker within electrode (Inflection Point Position � Model R2 * SpeakerSubset + (1 | Subject) + (1 | Electrode:Subject)).

Experiment 2: Synthetic vowels
Stimuli and procedure

Participants passively listened to a set of synthesized vowel tokens. Stimuli were synthesized using an online version of the Klatt

vowel synthesizer (www.source-code.biz/klattSyn/), with fixed pitch (250 Hz), F3 (3.1 kHz) and F4 (3.3 kHz). F1 and F2 were varied

orthogonally to cover the entire vowel formant range as well as values outside those occurring in natural speech. For F1, we selected

10 values between 200 and 100 Hz (200, 255, 310, 420, 530, 640, 750, 860, 915, 970); for F2 we selected 10 values between 500 and

3000Hz (500, 650,850,1200,1550, 1900, 2250, 2600, 2800, 2950). Stimuli covered all F1/F2 combinationswith F2 larger than F1. Data

in this taskwere recorded in five blocks of approximately 4-min duration each, resulting in 8 to 10 repetitions per token in each patient.

Tokens were 300 ms long and were presented with an average intertrial interval of 800 ms, randomly sampled from a uniform distri-

bution between 700 and 900 ms.

All stimuli were presented at a comfortable ambient loudness (�70 dB) through free-field speakers (Logitech) placed approximately

80 cm in front of the patients’ head using custom-written MATLAB R2016b (MathWorks, www.mathworks.com) scripts and psy-

chtoolbox.86–88 Stimuli were sampled at 16 kHz for presentation in the experiment. Participants were asked to listen to the stimuli

attentively and were free to keep their eyes open or closed during the stimulus presentation.
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Electrode selection

Analyses included electrodes located on the STG, which showed robust evoked responses to vowel stimuli, defined as electrodes for

which the best linear model, either with only main effects or with main effects and interaction terms, explained at least 10 % of the

variance. Analyses contained 160 electrodes, 10 to 33 within single patients.

Analysis of variance

As neural responses had a stereotypical evoked response peaking between 100 and 400 ms after stimulus onset, we focused our

analyses on the mean HGA in that time window. Single time point analyses of the entire HGA time course produced qualitatively

the same results.

We modeled the main effects of F1, F2 and their linear interaction (F13 F2) onto evoked HGA responses to synthetic vowel onset

using linear models. To assess the unique variance for main effects, we compared a main effect model (HGA � F1 + F2) to

models containing only one formant (e.g., HGA � F1). To assess the unique variance explained by the interaction term, a full model

(HGA � F1 + F2 + F13 F2) was compared to the model containing main effects only (HGA � F1 + F2).

For comparability across electrodes, predictors and HGA were z-scored prior to model fitting. For comparison to natural speech

data, S-TRF models were fitted to natural speech response data on the same electrodes, using the same procedures as described

above. To assess the effect of the formant range onto electrode response properties, models were fitted twice: First using all stimulus

tokens, and second using only the subset of stimuli with formant values within the DIMEx vowel formant range.

Analyses across electrodes

For the correlations between beta weights across electrodes the model was beta(F2) � beta(F1) + (1|subj) + (1|el:subj).

For the comparison betweenmodels on full data and reduced stimulus sets the model was: R2�model*tuningDirection + (1|subj) +

(1|el:mod).

QUANTIFICATION AND STATISTICAL ANALYSIS

We used R2 as a metric of model fit for model comparisons between linear and sigmoidal models.

Analysis across electrodes
Analysis across electrodes were conducted using Pearson’s correlations across all electrodes as well as with mixed-effects

modeling with random intercepts and slopes for subjects and electrodes. Mixed effects models fit using the matlab function fitlme.

Specific models are listed in the corresponding sections above.
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