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SUMMARY
The human hand is unique in the animal kingdom for unparalleled dexterity, ranging from complex prehension
to fine finger individuation. How does the brain represent such a diverse repertoire of movements? We eval-
uated mesoscale neural dynamics across the human ‘‘grasp network,’’ using electrocorticography and
dimensionality reduction methods, for a repertoire of hand movements. Strikingly, we found that the grasp
network represented both finger and grasping movements alike. Specifically, the manifold characterizing
the multi-areal neural covariance structure was preserved during all movements across this distributed
network. In contrast, latent neural dynamics within this manifold were surprisingly specific to movement
type. Aligning latent activity to kinematics further uncovered distinct submanifolds despite similarities in syn-
ergistic coupling of joints between movements. We thus find that despite preserved neural covariance at the
distributed network level, mesoscale dynamics are compartmentalized into movement-specific submani-
folds; this mesoscale organization may allow flexible switching between a repertoire of hand movements.
INTRODUCTION

The human hand is unique in the animal kingdom for demon-

strating remarkable dexterity that far exceeds that of non-human

primates (Napier, 1960). Not only can the human hand perform

complex prehensile postures, but it is also capable of individu-

ating fingers with precision, especially the opposable thumb

(Young, 2003; Faisal et al., 2010). How does the human brain

flexibly switch between such a diverse repertoire of hand move-

ments? Classic lesion and inactivation studies along with elec-

trophysiological recordings in non-human primates have high-

lighted the role of a large-scale network, otherwise called the

‘‘grasp network,’’ encompassing premotor, sensorimotor, and

parietal regions (Schaffelhofer and Scherberger, 2016; Davare

et al., 2011; Brochier and Umiltà, 2007; Jeannerod et al., 1995;

Rizzolatti and Luppino, 2001; Taira et al., 1990;Lemon, 1993;

Fagg and Arbib, 1998). The nodes of the network are also

believed to be compartmentalized into distinct ‘‘cortical areas’’

linked by reciprocal connections; compartmentalization in hu-

mans may be distinct even from non-human primates (Koch

et al., 2010; Changeux et al., 2020; Grèzes et al., 2003; Lemon,

2008). While this suggests that flexible hand control depends

on spatiotemporal network activity (Hattori et al., 2009; Wheaton

et al., 2005; Filimon, 2010), it also raises the fundamental ques-
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tion of how such distributed activity patterns flexibly support a

diverse repertoire of movements. To address this question, we

turned to a prominent current hypothesis that postulates that

latent activity restricted to low-dimensional subspaces support

computations (Santhanam et al., 2009; Churchland et al., 2012;

Gallego et al., 2018; Hall et al., 2014; Stavisky et al., 2019; Bou-

chard et al., 2013; Sadtler et al., 2014; Briggman et al., 2005;

Athalye et al., 2017; Flint et al., 2020). The low-dimensional sub-

space is called a neural manifold (Figure 1). Activity captured

within this manifold, calculated by projecting high-dimensional

data, constitutes latent time-varying neural population dynamics

(Gallego et al., 2017; Jazayeri and Afraz, 2017; Veuthey et al.,

2020). Notably, whether and howmesoscale activity in the grasp

network can be represented as a manifold is poorly understood;

this is especially the case when examining a repertoire of move-

ments. Our study aimed to determine whether and how meso-

scale manifolds spanning the grasp network represent hand

movements ranging from finger individuation to grasping, using

mesoscale electrocorticography (ECoG, Figure 1A) and dimen-

sionality reduction methods.

An important first question is whether a repertoire of hand

movements ranging from finger individuation to grasping recruits

a distributed network; the grasp network has exclusively been

studied in context of grasping. It remains unclear, however,
.
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Figure 1. Latent dynamics and neural manifolds for hand-movement repertoire

(A) Multi-area ECoG grid coverage in grasp network colored by anatomical region (MFGc, caudal medial frontal gryus along the dorsal premotor cortex; Pars

Operc., pars opercularis along the ventral premotor cortex; Post. Central, post central gyrus or primary S1; Pre Central, pre central gyrus or primary M1; Sup.

Parietal, superior parietal gyrus along the posterior parietal cortex; STG, superior temporal gyrus along temporal cortex; SMG, supramarginal gyrus along inferior

(legend continued on next page)
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whether single-finger movements might share a common

cortical network with grasping movements. Evidence for the

presence of a common distributed network would permit com-

parisons among each movement’s ‘‘manifold,’’ a subspace in

high-dimensional ECoG channel space that spans the network

(Figure 1B). This manifold, identified using principal component

analysis (PCA), represents covariance patterns (Gallego et al.,

2018; Kobak et al., 2016; Athalye et al., 2017; Churchland

et al., 2012; Sadtler et al., 2014; Hall et al., 2014) due to interac-

tions in the grasp network during movement (Figure 1B). Each

axis of the manifold, a neural mode or neural PC, represents a

network of covarying multi-areal activity during movement.

Such manifolds can be individually identified for the repertoire

of hand movements (Figures 1B and 1C). Given all the move-

ments here arise from a common kinematic basis, the hand (To-

dorov and Ghahramani, 2004; Santello et al., 2013; H€ager-Ross

and Schieber, 2000), it is possible that themanifoldmight be pre-

served across movements. The overarching hypothesis underly-

ing our approach is that a common low-dimensional manifold,

based on multi-areal neural covariance, underlies all hand

movements.

We then focus on the latent neural dynamics, i.e., temporal ac-

tivity patterns captured in the common manifold; how might

these compare across movements? One intriguing possibility

is that the latent dynamics might also be temporally similar

across movements (Figure 1D). This might especially be true

for the human handwhere there is significant temporal, neuronal,

and biomechanical coupling between joints during movement

(H€ager-Ross and Schieber, 2000; Todorov and Ghahramani,

2004; Schieber, 1995; Indovina and Sanes, 2001; Schieber,

1990; Sanes et al., 1995; Ejaz et al., 2015; Leo et al., 2016), sug-

gesting that the output from the brain may have some degree of

similarity for the different movements. This possibility is also sug-

gested by studies in non-human primates performing either

gross arm movements or a set of reach-to-grasp and wrist tasks

wherein latent dynamics in primary motor areas were highly pre-

served across movements (Gallego et al., 2018; Kaufman et al.,

2016; Churchland et al., 2012). Alternatively, another possibility

is that neural dynamics might be temporally distinct for different

movements (Figure 1E). This would suggest that streams of

spatiotemporal mesoscale activity are kept segregated within

the grasp network. We used demixed principal-component anal-

ysis (dPCA, Kobak et al., 2016) to understand whether a signifi-

cant proportion of latent dynamics were temporally common

across movements or whether temporal patterns of latent dy-
parietal lobe), along with a visualization of 3D kinematic positions (wrist joint, MC

phalangeal joint; End pt., end point segment).

(B) Time-varying neural activity (blue solid line) in a high-dimensional space define

over distributed regions, we can identify multi-areal low-dimensional manifolds f

neural PCs (‘‘neural modes,’’ red), representing channels with covarying neural ac

line) constitute latent dynamics.

(C) Snapshots of the hand during each of the eight movements in the study.

(D) First possibility onmanifolds and latent dynamics (via dPCA) postulates that tem

movements. Aligning each movement’s latent activity to kinematics using CCA le

common appendage, the hand.

(E) The second possibility postulates that latent dynamics are distinct and comp

latent dynamics constitute a higher proportion of the overall neural variance. Align

submanifolds.
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namics were kept segregated (Figures 1D and 1E). Distinguish-

ing between these two types of grasp-network representations

can provide insight into how it compartmentalizes mesoscale

dynamics by movement type.

We then further assessed how aligning each movement’s

neural dynamics to its hand-joint kinematics reflects on behav-

iorally relevant submanifolds. Recent work suggests that align-

ing neural dynamics to movements can provide further insights

into compartmentalization (Sani et al., 2020; Jazayeri and

Afraz, 2017). If, for example, temporal patterns of latent neural

dynamics were shared between movements, then aligning

neural data to kinematics at behaviorally relevant timescales

would result in highly overlapping ‘‘kinematically aligned sub-

manifolds’’ within the larger neural subspace. In this scenario,

the subspaces that track kinematics are largely shared

between movements and might represent intracortical pro-

cessing of action regardless of the specific hand movement

(Figure 1D). Alternatively, if latent neural dynamics were com-

partmentalized by movement type, then aligning each move-

ment’s latent dynamics to its kinematics would result in distinct

kinematically aligned submanifolds. Each movement’s kine-

matically relevant latent neural trajectories would therefore be

compartmentalized in distinct submanifolds within the com-

mon larger manifold (Figure 1E). We used canonical correlation

analysis (CCA; Ewerbring and Luk, 1989; Wang et al., 2020) to

align each movement’s latent neural dynamics to its kinematics

and identify the aligned submanifolds separately for each

hand-movement type.

Strikingly, our results revealed that, while there is indeed a

common multi-areal manifold (based on PCA) across a reper-

toire of hand movements, there are also submanifolds (identified

by CCA) highly specific to the kinematics of each hand move-

ment. Such distinct submanifolds could not be accounted for

by possible somatotopic differences between movements. Sur-

prisingly, this was even the case for both finger and grasping

movements, highlighting the notion that even apparent single-

finger individuation recruits the grasp network. Rather, our re-

sults revealed that the distinct aligned submanifolds were due

to distinct temporal patterns of latent dynamics in the common

manifold. Our results thus provide evidence that, although the

overall multi-area manifold is preserved and that the movements

themselves arise from a common kinematic basis, there is

remarkable compartmentalization of mesoscale dynamics into

distinct submanifolds for each hand movement. Such compart-

mentalization may underlie the remarkable ability of humans to
P, metacarpal segment; PIP, proximal interphalangeal joint; DIP, distal inter-

d by activity of individual channels. Due to neural covariance between channels

or a repertoire of hand movements (post-cards) using PCA. Manifold axes are

tivity. High-dimensional channel activity projected onto manifold (black dotted

poral patterns of latent dynamicswithin a commonmanifold are shared across

ads to highly overlapping submanifolds given that all movements arise from a

artmentalized. Specifically, temporally distinct movement-specific patterns of

ing each movement’s latent activity to kinematics leads to compartmentalized
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flexibly select and execute a specific action from a repertoire of

movements that arise from the hand.

RESULTS

Experimental design
To understand multi-area manifolds underlying hand move-

ments, we recorded high-density ECoG signals in the grasp

network from four human subjects monitored for epilepsy. We

also measured continuous 3D position data of all the joints in

the hand using LeapMotion. Participants in this study performed

eight self-paced pantomimed movements in a block design:

flexion/extension of each of the five individual fingers and three

common grasp movements. The three grasps were the "pinch"

grasp where the index and thumb come together (instructed to

‘‘pantomime picking up a small object’’), the "tripod" grasp

involving the index, middle, and thumb fingers (pantomime

‘‘pick up an object like a marker’’), and the ‘‘power’’ grasp

(pantomime ‘‘pick up a large object that requires closing your

whole hand’’). An individual trial constituted of a complete cycle

of flexion/extension (fingers) and opening/closing for the three

grasps. Subjects had full control of their hand in space, with their

elbow and forearm supported by a pillow. The null position of the

hand between cycles of movements was when all fingers were

fully outstretched. On average, participants performed 23 trials

per movement (bootstrapped 95% CI 21–25 trials).

Grasp network and low-frequency oscillations
ECoG signals have been characterized by multiple distinct fre-

quencies of oscillations. For our study, we primarily focused on

low-frequency oscillations or LFOs (Ramanathan et al., 2018;

Bansal et al., 2011; Rickert et al., 2005; Agashe et al., 2015),

defined in this study to be d band activity (0.5–4 Hz). LFOs are

widely evident in mesoscale ECoG recordings when decoding

arm and hand kinematics (Pistohl et al., 2012; Paek et al.,

2014; Ramanathan et al., 2018; Pistohl et al., 2008; Acharya

et al., 2010) and are distributed over cortical motor regions (Miller

et al., 2007; Kubánek et al., 2009; Ganguly et al., 2009). Indeed,

we confirmed that the envelope of distributed LFOs (we imply

envelope when mentioning LFOs unless we explicitly mention

the oscillation profile) in the mesoscale grasp network tracked

cycles of flexion/extension of individual finger movements

(Figure S1).

While our main study objective was to establish a dynamic

view (i.e., modeling spatiotemporal activity patterns), we also

wondered whether a static property of LFOs (i.e., mean activity

of all channels) encoded movement information. For example,

prior fMRI research has shown that the distance between finger

movements’ mean voxel-wise activity in local M1 circuits exhibit

a ‘‘representational structure’’ characterized by a unique set of

similarity patterns between movements (Ejaz et al., 2015). How-

ever, such a representational structure in mean cortical activity

has not been shown at the level of the mesoscale grasp network

and in relation to both finger and grasping movements. We eval-

uated the pairwise distance between movements’ mean (time-

averaged) LFO activity using the Mahalanobis distance, which

is the static distance between the location of movements’ neural

data in high-dimensional channel space, i.e., distance between
neural centroids (Figure 2A). Formally, it measures the distance

betweenmulti-dimensional channel means scaled by the pooled

multi-dimensional variance. An example of the mean LFO ampli-

tudes across the network for two movements is shown in Fig-

ure 2B. Analysis of the average pairwise Mahalanobis distance

matrix (Figure 2C) and the clustering of Mahalanobis distances

between movements (Figure 2D) revealed a representational

structure was present (mean correlation of r = 0:38; p<1310�3

between participants’ individual distance matrices). First, the

three graspmovements clustered together. Next, the index,mid-

dle, ring, and pinky fingers clustered together. Notably, the

thumb was overall similar to grasping actions than other finger

movements (Figure 2D). We found a similar representational

structure when using a linear classifier (support vector machine;

Fan et al., 2008) to discriminate time points around the centroid

of eachmovement’s grasp-network channel LFOs (Figures S2A–

S2D). Thumb movements were again closer to grasping (Fig-

ure S2C, by 2.3%, mixed effects tð26Þ = 2:4; p = 0:024). The

distance between movements’ mean LFO activity was signifi-

cant enough to achieve high accuracies in SVM classification,

either in a pairwise (Figure S2E) or multi-class scheme

(Figure S2F).

Overall, our results showed that LFOs across the grasp

network carry significant movement-related information, both

in terms of tracking kinematics and in their static location in

high-dimensional channel space, and therefore are a good

candidate feature for characterizing grasp-network mesoscale

manifolds.

The multi-areal neural manifold is preserved across
movements
We then used PCA to identify the ‘‘manifold,’’ i.e., the multi-area

mesoscale covariance structure; this analysis was performed

individually for each movement within each subject. Note that,

in all subsequent manifold analysis that involves dimensionality

reduction based on a covariance structure, the mean activity of

each channel was removed as it does not inform on covariations.

Results revealed that the majority of variance could be captured

by a low-dimensional 45D mesoscale manifold (�75% of the

overall neural variance, SD range: 71.4%–80.52% across move-

ments, subjects) achieving a >5-fold dimensionality reduction

(Figure 3A). Hereafter, the term manifold refers to the general

low-dimensional subspace captured using PCA; in contrast,

‘‘submanifolds,’’ discussed in later sections, refer to when we

align latent dynamics to kinematics using CCA.

We evaluated whether the manifold, identified individually for

each movement, was preserved across movements given that

the movements themselves arise from a common kinematic

appendage. To do this, we used the method of principal angles

and principal directions to evaluate whether the 45D manifolds

were oriented similarly (Figure 3B; Gallego et al., 2018). If two

manifolds are oriented similar to each other in high-dimensional

channel space, then there will always be some linear combina-

tions of each manifolds’ individual neural modes that result in

very small angles. These linear combinations of the neural

modes are called the principal directions within each manifold,

and the resulting angles are called the principal angles. There

are as many principal directions and principal angles as the
Neuron 110, 154–174, January 5, 2022 157



A
B

C D

Figure 2. Representational structure in mean, static activity across the grasp network

(A) We evaluated the Mahalanobis distance between the static locations of movements’ neural data in high-dimensional channel space. The mean activity, by

averaging LFOs over time (left), defines the static location or neural centroid of channel LFOs (solid circles in the plot on right); the multi-dimensional variance

determines the spread around the centroid (ellipsoid dotted lines).

(B) Mean channel LFO amplitudes across the ECoG grid overlaid on the brain for a subject (EC169). Increasing electrode radii denoting higher mean LFO

amplitude values; color denotes anatomical location.

(C) The average pairwise Mahalanobis distance matrix between movements’ centroids.

(D) Hierarchical clustering of the average distance matrix in (C) revealed a representational structure depicted by a dendrogram.
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manifold dimensionality. The principal angles between the

thumb and the other seven movements’ manifolds are shown

in Figure 3B for one participant. The principal angles suggested

similar orientation between manifolds, with the first principal

angle between the thumb and other movement manifolds having

a mean of 8.34 degrees (Figure 3B, [95%CI 8.15–8.52 degrees]).

Under the null hypothesis, we would not expect a difference

between the observed principal angles between movements

from a null distribution of principal angles. We used the tensor

maximum entropy method (TME; Elsayed and Cunningham,

2017; Gallego et al., 2018; see STARMethods) to simulate surro-

gate tensors of neural data without a covariance structure

ðRchannel3time3mvmt�typeÞ 1,000 times, thereby allowing us to

compute null distributions of principal angles from the surrogate
158 Neuron 110, 154–174, January 5, 2022
data. For example, the threshold for significance of the principal

angles is shown as a black dotted line in Figure 3B ða = 0:05Þ. It
can be seen that the principal angles between the thumb and

other seven movements were much lower than what could be

expected by chance (Figure 3B). There are 28 total pairwise

comparisons between movements per subject given the eight

movements in our study. For each such pairwise comparison,

we can evaluate the number of significant principal angles be-

tween the two 45D manifolds. Results revealed that a minimum

of 44 of the 45 principal angles were significantly smaller than

would be expected by chance (Figure 3C, a = 0:05, false discov-

ery rate [FDR] corrected, Benjamini and Hochberg, 1995). The

manifold was therefore oriented in high-dimensional channel

space similarly across movements.
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Figure 3. Common multi-areal manifold represents the movement repertoire

(A) PCA was used identify a manifold for each movement from LFOs. Average neural variance accounted for (VAF) by the PCs or neural modes is shown in

the figure.

(B) (left) Similarity in the orientation between movements’ 45D manifolds was evaluated in pairwise manner using the method of principal angles; smaller angles

imply highly overlapping manifolds. (right) Principal angles between thumb manifold and the other seven movements in the repertoire is shown for an example

subject. The black dotted line represents the lower bound of the null distribution of principal angles (2.5th percentile for a = 0.05), and the average first principal

angle is highlighted (8.34 degrees).

(C) Average normalized histogram of number of significant principal angles between movements’ 45D manifolds (angles computed pairwise), where each open

circle represents a single subject.

(D) Ratios of across-movement VAF to within-movement VAF in real (orange) and control data (light blue) depicted as histograms.

(E) Cortical channel representation of an exemplar neural mode (1st neural PC weights, EC189 thumb). Increasing sizes of electrode represent increasing spatial

covariance.

(F) Boxplots of the average channel weight magnitudes within each node of the grasp network for all 45 neural modes (across movements and subjects). Edge of

blue box correspond to 25th and 75th percentile of data; red horizontal line corresponds to the median and the whiskers extend to the entire data spread not

considered outliers.
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The similar orientations between movement manifolds sug-

gested that the multi-area neural covariance structure was

shared across movements. To verify this, we computed the ratio

of across-movement VAF to within-movement VAF (Gallego

et al., 2018). The within-movement VAF is the amount of variance

captured by each movement’s own 45D manifold. The across-

movement VAF is the neural variance captured by projecting a

movement’s data onto the 45D PCA manifold of another move-

ment. If all movements shared variance in a common low dimen-

sional manifold based on a similar neural covariance structure,

then the ratio of the across-movement VAF to within-movement

VAF would be close to one. Indeed, the average ratio of the VAF

was 0.79 across subjects and movements (95% bootstrapped

CI 0.775–0.8). The distribution of these ratios was significantly

different from control neural VAF ratios (0.294 ½0:268 � 0:316�)
wherein the across-movement VAF was obtained by projecting

data onto random 45Dmanifolds (Figure 3D, p%0:01; two-sided

Kolmogorov-Smirnov [KS] test between distribution of ratios in

the real data versus control). We then examined the spatial

extent of the common multi-areal manifold. Each axis of the

45D manifold, the PCA neural mode, is a vector in high-dimen-

sional channel space whose weights identify multi-areal chan-

nels with covarying neural activity. The weight magnitudes of

the first neural mode during thumb movements is shown in Fig-

ure 3E for a subject. We computed the average channel weight

magnitudewithin each node of the grasp network for eachmove-

ment’s 45Dmanifold. Results revealed that themodes of the 45D

manifolds engaged all regions of the grasp network equally

(Figure 3F).

Overall, our results showed that the manifold characterizing

multi-areal covariance was remarkably preserved, and a com-

mon grasp-network subspace represented all hand movements,

from finger individuation to grasping.

Latent dynamics within the common subspace are
distinct for the movement repertoire
Having identified a common mesoscale manifold, we examined

the temporal patterns of latent dynamics within it using demixed

principal component analysis or dPCA (Kobak et al., 2016; Gal-

lego et al., 2018). Here, we use dPCA to examine both move-

ment-specific and movement-independent latent dynamics

within the common manifold. Given our experimental design,

the objective function of dPCA finds two types of dPC neural

modes: (1) time dPC modes that capture time-varying activity

that is common to all movements, i.e., movement-independent

latent activity and (2) movement dPC modes that capture time-

varying activity that is distinct to movement type, therefore iden-

tifyingmovement-dependent latent activity (Gallego et al., 2018).

The two types of dPCA modes therefore de-mix the neural data

and capture either temporally common or temporally distinct

latent dynamics. The VAF by each type of dPC neural mode

can be estimated in terms of a reconstruction error of the original

neural data and sorted by variance (Kobak et al., 2016). The VAF

of each dPCmode delineates what proportion of the overall vari-

ance of all eight movements is due to either temporally consis-

tent neural dynamics or temporally distinct neural dynamics

between movements. We performed dPCA on trial-averaged

data to more reliably uncover the dPCA modes.
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An example of the VAF by the first 15 time andmovement-spe-

cific dPCA modes are shown in Figure 4A for a participant.

Interestingly, in contrast to findings using spiking data in local

M1 circuits across a set of movements (Gallego et al., 2018;

Kaufman et al., 2016), the movement-specific dPCA modes

contributed to the majority of the variance in dPCA analysis, by

a factor of almost �5:1 (83.62% to 16.38% on average) in

each participant over the time dPCA modes (Figures 4A and

4B). Therefore, the majority of variance in the neural data was

driven by the fact that each movement was characterized by

its own distinct temporal pattern of latent dynamics in a common

subspace. From a physiological perspective, this result implies

that there are distinguishable phases or differential timing of ac-

tivity within the nodes of the grasp network between movements

(see Figure S3 for plot of mean LFO traces across the grasp

network for all movements).

We then visualized both common and movement-specific

latent dynamics by projecting LFOs onto a few exemplar dPCA

modes for one participant (Figure 4D). The common neural dy-

namics (Figure 4D, bottom) seemed to be qualitatively highly

linked to cycles of movement (Figure 4C). For instance, activity

projected onto the first time dPCA mode exhibited a peak in

LFO envelope right before full flexion or grasp closing. Similarly,

activity projected onto the second time dPCA mode exhibited a

peak just after full flexion or grasp closing. Activity in another

exemplar time dPCA mode seemed to preserve phasic cycles

of LFO power in both phases of flexion/extension or opening/

grasping. Conversely, projecting activity onto the first three

movement-specific dPCA modes highlights the temporal differ-

ences in latent neural dynamics betweenmovements (Figure 4D,

top). The starting location of the neural dynamics was different

for each movement, as was the time-varying trajectory in the

latent subspace. Our main results of temporally distinct latent

dynamics within a common multi-areal subspace persisted

regardless of how we epoched our neural data, i.e., epoching

data either around peak flexion/closing or via normalizing the

entire length of the trial.

Manifolds and dynamics of high-gamma follow low-
frequency oscillations
To what extent are our results dependent on our choice of LFOs,

given that the framework of neural manifolds during behavior had

primarily been developed with spiking activity in M1 ensembles

(Santhanam et al., 2009; Kaufman et al., 2016; Churchland

et al., 2012; Gallego et al., 2018; Athalye et al., 2017)? It should

be noted that prior studies in animals have identified LFO field

potentials as a correlate of coordinated population-level spiking

activity (Hall et al., 2014; Ramanathan et al., 2018). Although

mesoscale ECoG recordings are fundamentally different signa-

tures of neural activity compared to spiking activity, a putative

correlate of underlying population spiking activity at an ECoG

recording channel is best represented by high-gamma enve-

lopes ðgh; broadband activityR70 Hz (Chang, 2015)). We there-

fore first investigated the relationship between LFOs and gh en-

velopes at individual channels across the grasp network during

movement (Canolty et al., 2006).

To investigate the relationship between LFOs and gh; we fol-

lowed the following phase-based analyses. Specifically, raw
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Figure 4. Latent dynamics within the common manifold are distinct for the repertoire

(A) Example of neural VAF from the dPCA analyses for a subject.

(B) Comparison of the neural VAF due to the two types of dPC modes across all four subjects (each filled circle represents an individual subject and bar rep-

resents mean).

(C) Highlighting the kinematic phases of either finger movements (flexion and extension, top) or grasping (opening and closing, bottom)

(D) (top) Projection of high-dimensional channel data onto the top three movement-specific modes (modes common to all movements) uncovers temporally

distinct latent dynamics within the common neural dPC subspace. (bottom) Projection of high-dimensional channel data onto the top three time modes (modes

common to all movements) uncovers temporally common latent dynamics shared across the eight movements within the common neural dPC subspace.
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ECoG signal was first filtered into two frequency bands: LFO os-

cillations (0.5–4 Hz d band filtered activity, Figure 5A) and high-

gamma oscillation between 70 and 150 Hz (Figure 5A). We

then extracted the envelope of the 70- to 150-Hz oscillation using

the Hilbert transform to generate gh envelopes (hereafter, the en-

velope is implied when mentioning gh). The gh signal was further

filtered within the low-frequency d band of 0.5–4 Hz, thereby ex-

tracting the low-frequency component of gh (hereafter called

gLFO
h , Figure 5A, orange). If mesoscale gh were to exhibit a rela-

tionship with LFOs, then there should be coupling between the

phase of LFO oscillations and the phase of gLFO
h . We thus ex-

tracted the respective phases of LFO oscillations and gLFO
h using

the Hilbert transform and evaluated the preferred phase differ-

ence (Figure 5A). The circular mean of the preferred phase differ-

ences between the two signals is the phase locking value (PLV)

(Canolty et al., 2012b). The PLV is a complex number; its magni-

tude represents the trial-to-trial phasic consistency, and its angle

represents the preferred phase relationship between the two sig-

nals. Analyses of the PLV magnitudes showed that a significant

phasic relationship existed (assessed by circularly shuffling the

phase of LFOs), a single M1 channel is shown in Figure 5A (polar

histogram). On average, �70% of channels across our subjects

exhibited such a significant relationship (Figure 5B, a = 0:05,

FDR corrected; see a single subject example of significant chan-

nels in Figure S4). A summary figure of the preferred phase-angle
between LFOs and gLFO
h is shown in Figure 5C. The time course

of LFOs across the network was thus closely related to low-fre-

quency gh.

Having established the relationship between LFOs and gLFO
h ,

we then sought to analyze the manifolds and latent dynamics

of gLFO
h . To this end, we first identified a 45D gLFO

h manifold for

each movement using PCA. Across movements and subjects,

the 45D gLFO
h manifold captured a median of 58.02% of the neu-

ral VAF (SD range 51%–65.1%). We then contrasted the identi-

fied 45D gLFO
h manifolds between movements pairwise to verify

whether they were similarly oriented to each other in high-dimen-

sional channel space, in a manner similar to earlier analyses with

LFOs. Results revealed that the 45D gLFO
h manifold was indeed

preserved across movements; the principal angles between

movements’ manifolds were significantly smaller than chance

(single subject example in Figure 5D) with a median of 43 out

of 45 significant principal angles across all pairwise comparisons

(28 pairwise comparisons in each subject for a total of 112 com-

parisons, Figure 5E). To verify that variance in this multi-areal

gLFO
h neural manifold was shared across movements, we

computed the ratio of across-movement neural VAF to within-

movement neural VAF by projecting gLFO
h data from one condi-

tion onto the gLFO
h manifold of another condition. Results re-

vealed that this ratio was high (0.69 [95% bootstrapped CI

0.67–0.705]) and significantly greater than would be expected
Neuron 110, 154–174, January 5, 2022 161
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by projecting data on random manifolds (0.38 on average for

randommanifolds, p%0:01 on two-sided KS test between distri-

butions of ratios for real and control data, Figure 5F). Thus, a

common gLFO
h manifold represented all hand movements.

We then used dPCA to evaluate similarities in latent neural dy-

namics between movements in the common 45D manifold (on

trial-averaged gLFO
h data) (Figure 5G). Like earlier results with

LFOs, there was little temporal commonality in latent gLFO
h dy-

namics in the grasp-network subspace. The majority of neural

variance in gLFO
h , by a ratio of�7:1 (87.65%:12.35% on average),

was due to the movement-specific modes. A single example of

the neural VAF due to either movement-specific or time modes

is shown in Figure 5H; the overall VAF due to these two modes

for four subjects is shown in Figure 5I. Therefore, like LFOs,

each movement was primarily characterized by its own tempo-

rally distinct latent gLFO
h dynamics rather than temporally shared

latent activity patterns.

Given the similar manifold and latent dynamics properties of

both grasp-network LFOs and gLFO
h for the hand-movement

repertoire and their significant phasic relationship, we then

wondered how similar the two respective subspaces were. We

thus compared the two signals’ manifolds. Specifically, we eval-

uated the proportion of neural variance in one manifold that was

captured by the other (Figure 5J). If both signals largely share a

common subspace, then the proportion of shared variance

would be significantly greater than chance (Degenhart et al.,

2020). Indeed, results revealed that for each subject, the per-

centage of shared variance between the two signals’ dPCAman-

ifolds (average 31.1%) was significantly greater (p% 0:01, FDR

corrected) than with random manifolds (on average 20.01%

½18:5�21:23 bootstrapped CI], Figure 5J). Similarly, we found

that the PCA manifolds of both signals shared significant vari-

ance with each other (42.7% ½38:4�45:2 bootstrapped CI], Fig-

ure S5) as compared to sharing variance with random manifolds

(21.1% ½19:5�22:41 bootstrapped CI], p%0:01 on two-sided KS

test between distributions). The 45D multi-areal subspaces and

low-dimensional covariance structure of both signals were

therefore more similar to each other than expected by chance.
Figure 5. LFO oscillations are phase-locked to high-gamma ðgHÞ and sh

gamma ðgLFO
H Þ

(A) Example of phase-locking value (PLV) between LFO oscillations and the low-f

denotes phase differences between phase of LFOs and gLFO
H across time and tri

(B) The percentage of channels with significant PLV magnitudes aggregated acro

bar depicting the mean.

(C) Summary plot across all subjects showing the circular distribution of preferred

channels within each node of the grasp network. Mean preferred phase is show

(D) Example of the principal angles between the thumb’s 45D gLFO
H neural manifol

shown for an example subject. The black dotted line represents the lower bound

(E) Average normalized histogram of the number of significant principal angles be

eight movements in the study across the four subjects, there were a total of 112

(F) Ratios of the across-movement VAF to within-movement VAF for gLFO
H manifo

(G) We used dPCA to fit a common gLFO
H neural manifold for all eight movements

(H) Example of the neural VAF from the dPCA analyses on gLFO
H .

(I) Comparison of the neural VAF due to the two types of dPC modes across all fo

the mean.

(J) (left) Shared variance between the two signals’ dPCA manifolds was computed

by the other signal’s dPCA manifold. (right) Shared variance between LFO and g

rogate distribution of shared variance between either of the two signals’ dPCA m
Kinematic recordings of the hand-movement repertoire
Our model of compartmentalized grasp-network activity (Fig-

ure 1E) also makes the prediction that aligning the temporally

distinct latent dynamics to kinematics (separately for each

movement) will also result in distinct kinematically aligned sub-

manifolds. We first sought to quantify the kinematics across

the repertoire. We used the LeapMotion system to measure

continuous 3D kinematic position data from all joints in each of

the five fingers (3D position of wrist, metacarpal segment

(MCP), proximal interphalangeal joint (PIP), distal interphalan-

geal joint (DIP), endpoint bone in each finger), resulting in 75 ki-

nematic dimensions that were referenced to the palm center (see

STAR Methods and see Figures S6A–S6C for processed whole-

hand kinematics). We also validated the LeapMotion system us-

ing a separate magnetic tracker system (Figure S6D). Given the

biomechanical and neuronal coupling in the hand, there is signif-

icant temporal covariation between joints. Such temporal covari-

ation patterns among joints can be represented by elemental

whole-hand control postures, called kinematic ‘‘synergies’’

(Santello et al., 1998; Ingram et al., 2008; Todorov and Ghahra-

mani, 2004); these appear to be preferentially encoded in the

brain over individual joints or muscles (Leo et al., 2016; Ejaz

et al., 2015). Here, we used PCA individually on each move-

ment’s and participant’s trial-concatenated kinematic dataset

to identify synergies and their temporal activation functions

(STAR Methods; Todorov and Ghahramani, 2004; Ingram et al.,

2008; Flint et al., 2017; Leo et al., 2016). The top three such syn-

ergies and their trial-averaged activations are shown in Figures

6A and 6B for the tripod grasp and thumb movements respec-

tively (see Figure S6E for single-trial activity in synergy space).

How might the synergies of finger individuation compare to

grasping? If fingermovements did not involve awhole-hand con-

trol strategy, then there should be a lower number of significant

synergies compared to grasping; these finger synergies should

also be restricted only to joints of the individuated digit. Howev-

er, while the first synergy was indeed specific to the dominant

digit (Figure 6C), subsequent synergies exhibited multi-jointed

covariation (Figures 6D and 6E). Could these secondary
are a common subspace with the low-frequency component of high

requency component of gH ðgLFO
H Þ at example M1 channel. Circular histogram

als and the red line depicts the angular mean of the circular phase data.

ss all eight movements shown for each individual subject (open circle) with the

phase angles between LFO oscillations and gLFO
H (the angle of PLV) across the

n by the red line in each circular histogram.

d and the 45D gLFO
H manifolds of the other seven movements in the repertoire is

of the null distribution of principal angles (2.5th percentile for a = 0.05).

tween movements’ 45D gLFO
H manifolds (angles computed pairwise). Given the

unique pairwise comparisons.

lds (orange) compared to control data (light blue) depicted as histograms.

and identify time and movement-specific dPCs.

ur subjects (each filled circle represents an individual subject). Bar represents

as the proportion of variance in a signal’s dPCA manifold that is also captured
LFO
H dPCA manifolds shown for each subject (filled circle), compared to a sur-

anifolds with random manifolds.
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Figure 6. Kinematic recordings of the hand-movement repertoire

(A) First three postural kinematic synergies and temporal activations, shown for tripod grasp. Shading of temporal activation corresponds to 95% bootstrapped

confidence intervals across trials and solid line corresponds to trial-averaged activation.

(B) First three postural kinematic synergies and temporal activation, shown for thumb movement. Shading of temporal activation corresponds to 95% boot-

strapped confidence intervals across trials and solid line corresponds to trial-averaged activation.

(C) The PC weights for each of the 75 dimensions (3D position of each the 5 joints of each of the 5 fingers) of the first thumb synergy.

(D) The PC weights for each of the 75 dimensions of the second thumb synergy.

(E) The PC weights for each of the 75 dimensions of the third thumb synergy.

(F) Number of significant synergies for each eight movement, calculated per subject (open circle), using the Marchenko-Pastur bound on the eigenvalues of

kinematic covariance matrix.

(G) Contribution of non-dominant fingers toward weights of first three finger-movement synergies (e.g., proportion of weights for index, middle, ring, and pinky

during thumb movements). Star sign represents significance at the 0.05 level. Edges of blue boxes correspond to 25th and 75th percentile of data, red horizontal

lines correspond to the median, and the whiskers extend to the entire data spread not considered outliers.
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Figure 7. Behaviorally relevant dynamics are compartmentalized into distinct kinematically aligned submanifolds

(A) Example of CCA where latent dynamics within the 45D manifold for the tripod grasp are aligned to its top-three synergy activations. CCA neural modes

correspond to linear combinations of activity along each of the 45 dimensions manifold and thus constitute submanifolds within the larger neural manifold. The

(legend continued on next page)
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synergies be a significant source of variation in the kinematic

data? While examining the variance accounted for by PCs can

determine the number of important synergies, we instead opted

for a statistical method based on randommatrix theory (the Mar-

chenko-Pastur [MP] bound, Marchenko and Pastur, 1967) to

identify the number of ‘‘statistically significant’’ synergies (Fig-

ure S6A). Interestingly, there were no differences in the number

of significant synergies between individual finger and grasping

movements (Figure 6F, mixed-effect model, tð30Þ = 1:07; p =

0:29). Across movements and subjects, the median number of

significant synergies was three; they were sufficient to capture

�95% of the variation. We found that a similar number of signif-

icant synergies was required to capture �95% VAF when we

analyzed kinematic data in the joint angle space (Figures S6F

and S6G). To further quantify whether the finger synergies

involved multi-jointed covariation across the entire hand or

only along the segments of the individuated finger, we examined

the representation of the non-dominant fingers weights (Fig-

ure 6G). For example, the non-dominant fingers during thumb

would consist of the index, middle, ring, and pinky fingers.

While the first synergy had lower representation of the non-

dominant fingers ð43:1%; ½95% C:I: 36:3% � 49:67%�Þ, the

second synergy had significantly higher representation of the

non-dominant fingers (78:83% ½75:11% � 82:31%�, mixed

effect models; tð38Þ = � 10; p = 3:4310�12). A similar result

was obtained when comparing the representation of the

non-dominant fingers in the third synergy (68:23% ½62:7%�
73:4%�; mixed effect models; tð38Þ = � 5:88; p = 8:163

10�7, Figure 6G).

Our results therefore revealed that the synergies of even ‘‘sim-

ple’’ individuated human finger movements were characterized

by whole-hand covariation patterns (see also Kirsch et al.,

2014 and Schieber, 1995 for a similar finding in nonhuman pri-

mates, Figures S6H and S6I). This might also explain why the

neural manifold is preserved for grasping actions as well as

apparent single-finger movements.

Kinematically aligned submanifolds
To identify movement-aligned submanifolds, we used canoni-

cal correlation analysis (CCA; Uurtio et al., 2017; Ewerbring

and Luk, 1989) to align each movement’s latent LFO dynamics
CCA kinematic modes correspond to linear combinations of the synergies. Pr

maximally correlated to each other.

(B) Boxplot representation of cross-validated CCA R values for first three CCA

nificance. Edges of blue boxes correspond to 25th and 75th percentile of data, red

data spread not considered outliers.

(C) Principal angles between 3D kinematically aligned CCA submanifold for the th

was computed with hypothesis of compartmentalized submanifolds (left). The bla

angles.

(D) Principal angles between the 3D aligned submanifolds of all movements, com

95% bound of the null distribution of principal angles.

(E) Illustration of CCA neural trajectories when neural dynamics of onemovement (

movement. The plot on the right is the middle-finger submanifold, and each of th

onto the middle-finger submanifold, color coded by movement type.

(F) Correlation of the three CCA neural trajectories with their corresponding kine

swapped (blue) across movements depicted as histograms.

(G and H) Example of preserving/swapping the 1D submanifold (1 CCA neural mo

only the first synergy activation. The correlations between the neural trajectory an

swapped (blue) are shown as histograms in (H).
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within the common 45D PCA manifold to its top three multi-

jointed kinematic synergies (Figure 7A). CCA discovers three

pairs of neural and kinematic modes such that the time-depen-

dent activation of any pair of neural and kinematic CCA modes,

i.e., the neural and kinematic trajectories, are maximally corre-

lated while being orthogonal to other CCA mode pairs. As we

built the CCA individually for each movement, this orthogonality

constraint applies only to CCA mode pairs within a movement

and not across movements. The CCA neural modes constitute

the 3D aligned submanifold within the larger PCA neural mani-

fold. Hereafter, submanifolds refer to the CCA kinematically

aligned subspace. Moreover, when we mention neural trajec-

tories, we refer to the behaviorally relevant neural trajectories

as a result of the CCA alignment. Cross-validation analyses

showed that the CCA modes were significantly predictive for

held out neural and kinematic data (Figure 7B, p%0:05, FDR

corrected). The mean cross-validated correlation between

the dominant CCA neural and kinematic trajectories across

participant and movements was 0:54 ð95% C:I ½0:49�0:583�Þ
and the value across all the second and third pairs of CCA

neural and kinematic trajectories across participants and

movements was 0:41 ð95% C:I ½0:39 � 0:433�Þ. Notably, CCA
kinematic trajectories were more strongly correlated with mix-

tures of synergies for finger movements, whereas they were

more correlated with individual synergy activity during grasping

movements (Figure S7).

To understand whether the aligned CCA neural submanifolds

were distinct for movement type (Figure 7C), we used the

method of principal angles. The principal angles between the

thumb CCA submanifold and the other movements’ CCA sub-

manifolds are shown in Figure 7C. It can be seen that the prin-

cipal angles between the submanifolds was quite large, with

the first principal angle between submanifolds having a mean

of 67.6 degrees (95% CI 66.5–68.8) across all pairwise compar-

isons between movements. It should be noted that, although

these angles are large, there are not completely orthogonal

due to some degree of overlap given the statistics of the neural

data. However, these principal angles between CCA submani-

folds in the real data were not significantly smaller than the null

distribution (at the a=0:05 level, Figure 7D, using TME), quanti-

fying that CCA aligned submanifolds were not more similar than
ojecting data onto CCA modes produces neural and kinematic trajectories

trajectories. Pie charts show the proportion of the datasets that reached sig-

horizontal lines correspond to themedian, and the whiskers extend to the entire

umb compared to 3D aligned submanifolds of all other hand movements (right)

ck dotted lines correspond to the 95% bound of the null distribution of principal

puted pairwise within each subject. The black dotted lines correspond to the

within the 45Dmanifold) was projected onto the aligned submanifold of another

e traces represent neural activity from each of the eight movements projected

matic counterpart when CCA neural modes were either preserved (orange) or

de) when neural dynamics within the 45D preserved manifold was aligned with

d the first synergy when the 1D submanifold was either preserved (orange) or
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expected by chance. We found a similar result with the submani-

folds of gLFO
h (Figures S8A and S8B).

To illustrate that aligned CCA submanifolds compartmen-

talize each movement’s behaviorally relevant neural trajec-

tories, we cross-projected each movement’s latent dynamics

within the larger common manifold onto the CCA aligned sub-

manifolds of other movements. As shown in Figure 7E, LFO

latent dynamics of the middle finger was projected onto its

own CCA aligned submanifold (preserved CCA neural modes);

this is compared to the projection of latent dynamics of another

movement (pinch grasp) onto the middle-finger CCA submani-

fold (swap CCA neural modes). As illustrated, cross-projection

of the other seven movement’s latent dynamics in the 45D

manifold onto the middle submanifold degraded the temporal

structure of the movements’ kinematically relevant neural tra-

jectories. Given that the objective function of CCA is to find

temporally correlated neural and kinematic trajectories for

each movement, we evaluated the effect of neural submanifold

swapping on the correlation between neural and kinematic tra-

jectories. We found that projecting any movement’s latent dy-

namics onto another movement’s 3D CCA aligned submanifold

resulted in lower correlation with its three CCA kinematic trajec-

tories as compared to projecting neural data onto its own sub-

manifold (Figure 8F, two-sided KS test between distributions of

correlations from original neural modes versus swapped neural

modes, p%0:05, FDR corrected). To ensure the robustness of

the results concerning the distinctiveness of submanifolds,

we also implemented a robust version of CCA and projected

the submanifolds onto the column spaces of each other rather

than just swap them (see STAR Methods); however, our main

findings remained unchanged.

To verify that the distinctiveness of CCA submanifolds were

not an artifact of their dimensionality, we aligned latent neural dy-

namics to just the first synergy, at which point CCA reduces

to multiple regression. The time course of the first synergy acti-

vation was also highly correlated across movements as it cap-

tures the dominant cycle of flexion/extension in the case

of fingers or opening/closing in the case of grasping (mean

correlation between movements for the 1st synergy was r =

0:83 ½95% C:I 0:81�0:84� in trial concatenated data). However,

even in this highly constrained scenario where a common kine-

matic output was being regressed onto neural data, the 1D sub-

manifold was highly specific to movement type (Figures 7G and

7H). Swapping the 1D submanifold betweenmovements caused

a significant loss in kinematic correlation with the first synergy

(example for middle-finger movement shown in Figure 7G and

summary statistics across all movements and subjects shown

in Figure 7H, two-sided KS test, p%0:01). Overall, our CCA re-

sults confirmed that kinematically relevant neural trajectories

were compartmentalized bymovement type into distinct subma-

nifolds within the common multi-areal mesoscale manifold.

The aligned submanifolds span the grasp network
equally
The finding that distinct CCA aligned submanifolds lie within a

commonmulti-areal subspace is suggestive of a distributed rep-

resentation for hand motor control across the grasp network.

Could such a distributed architecture of the aligned CCA subma-
nifolds persist if we were to align high-dimensional LFOs to syn-

ergies directly without the intermediate PCA step? Such a finding

would confirm that computations in submanifolds spanning a

distributed cortical network represent the kinematics of the

movement repertoire. We thus applied CCA to align high-dimen-

sional channel level LFOs to the top three synergies directly

without the pre-processing step of first projecting channel

LFOs onto the common neural manifold. Each of the three resul-

tant CCA neural modes are now weighted linear combination of

channel LFOs, rather than weighted linear combinations of the

neural modes (PCs).

To identify a cortical network of ‘‘significant’’ channels, we first

established the importance of each channel’s weight magnitude

within each CCA neural mode; results revealed that dropping

channels with the highest weights in a CCA neural mode caused

greater loss in correlation than dropping channels with the lowest

weights (Figures 8A and 8B; Figure S9). To generate a surrogate

distribution of channel weights within each CCA neural mode,

we simulated each channel’s LFOs 2,000 times prior to running

CCA. We then identified significant channels within each CCA

neural mode if a channel’s weight magnitude exceeded the null

distribution at the a= 0:01 level (FDR corrected for multiple com-

parisons). Significant channels identified within each CCA neural

mode were isolated and then pooled together to identify a binary

cortical map of each movement’s aligned submanifold. On

average,30.8%(95% C:I ½28% � 34:13%�) of channelsweresig-

nificant at thea= 0:01 level (FDRcorrected). An exampleof such a

cortical network of channels during thumbmovement is shown for

one participant in Figure 8C. The distributed nature of the network

of channels appeared to be consistent across the various hand

movements (FigureS10). To statistically evaluate the similarity be-

tween each movement’s cortical network, we first projected the

significant channels onto the 3D cortical surface (Hamilton et al.,

2017) using a Gaussian function with a cortical spread of 1 cm,

creating LFO cortical channel density maps (Figure 8D). We then

evaluated the similarities between movements’ LFO cortical

channel density maps using the pairwise cosine distance metric.

The average pairwise similaritymatrix, depicted in Figure 8E, sug-

gested that therewasnoseparationbetweenmovements’density

maps, and that the cortical maps were not distinct (hierarchical

clustering, Figure 8F, p = 0:963).

Our results suggested that the spatial extent of each kinemat-

ically aligned manifolds spanned a distributed network, even

when directly aligning high-dimensional channel LFOs to syn-

ergies. To visualize this network, we projected all significant

channels from all participants onto an average brain template

(Hamilton et al., 2017), separately for grasping and finger

movements (Figure 8G). The network for both finger and grasping

movements spanned the grasp network equally, even though

one might have expected the kinematics of finger movements

to be driven more by primary sensorimotor areas (Indovina

and Sanes, 2001; Sanes et al., 1995). Indeed, there were

no statistical differences between finger and grasping move-

ments (Figure 8H, mixed-effect models, 0.05 level, multiple

comparison corrected, S1: tð30Þ = � 1:04; p = 0:30, M1:

tð30Þ = � 1:75; p = 0:09, parietal cortex: tð30Þ = � 1:61; p =

0:11, supramarginal gyrus: tð30Þ = � 1:16; p = 0:25, ventral

premotor cortex: tð30Þ= � 2:5; p= 0:018 and dorsal premotor
Neuron 110, 154–174, January 5, 2022 167
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Figure 8. Kinematically aligned submanifolds span the grasp network equally for both finger movements and grasping
(A) Dropping LFO channels with highest weights within first CCA neural mode significantly decreases correlation with synergies. Scale of y axis is normalized to

the maximum squared correlation when using all channels.

(B) The mean effect of dropping LFO channels based on their weight magnitude in the first neural mode for all subjects and movements, shown as thick lines and

with 95% bootstrapped CI shading.

(C) Example of significant channels across all CCA neural modes for thumb movements in a representative subject.

(D) Projection of significant channels onto the cortical surface created LFO cortical channel density maps shown for two movements. Color scale represents the

smoothed density of channels on the cortical surface.

(E) The average pairwise cosine distance between movements’ LFO cortical channel density maps.

(F) Hierarchical clustering of average distance matrix (depicted via dendrogram) revealed no significant separation between cortical channel density maps.

(G) Projection of significant channels across subjects onto an average MNI brain template separately for all finger and grasp movements. Boundaries of

Brodmann anatomical regions are color coded and labeled.

(H) Pairwise comparison of the proportion of significant channels within each anatomical region across subjects revealed no differences between finger and

graspingmovements. Edges of blue boxes correspond to 25th and 75th percentile of data, red horizontal lines correspond to themedian, and the whiskers extend

to the entire data spread not considered outliers.
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cortex: tð30Þ = � 1:43; p = 0:163). Importantly, we also found

that the distributed cortical structure of the aligned manifold per-

sisted even when finger movements were executed in a non-

rhythmic, cue-based manner (Figure S11).
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DISCUSSION

Our study aimed to understand how multi-areal manifolds and

latent dynamics in the grasp network represent a repertoire of
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hand movements. Our results showed that, although a manifold

based on mesoscale covariance is preserved across a reper-

toire of hand movements, latent dynamics within this common

multi-areal subspace are compartmentalized into distinct sub-

manifolds spanning the entre grasp network instead of relying

on shared low-dimensional patterns. Notably, these manifold

results held true for both LFOs and the low-frequency patterns

of gH, with unique phasic relationships between the two sig-

nals. Such distinct compartmentalized dynamics within a com-

mon subspace could correspond to the visuomotor transforma-

tions necessary to plan, select, and execute the appropriate

synergistic gestures for hand movements sharing a common ki-

nematic basis (Schaffelhofer and Scherberger, 2016; Michaels

et al., 2020). This mesoscale-level finding stands in contrast

to population spiking activity in local M1 circuits (Kaufman

et al., 2016; Gallego et al., 2018). In addition to grasp-network

dynamics, analyses of the static property of the grasp network

revealed a representational structure characterized by a unique

set of similarity patterns in the mean activity.

A common low-dimensional mesoscale manifold for
grasping and finger movements
Understanding the neural control of the hand has been of

exceeding interest in motor control research, from classic stim-

ulation and electrophysiology work in non-human primates (Muir

and Lemon, 1983; Buys et al., 1986; Lemon et al., 1987; Lemon,

1988; Schieber and Hibbard, 1993) to neuroimaging in humans

(Sanes et al., 1995; Indovina and Sanes, 2001; Colebatch

et al., 1991). However, the neural computations of how latent

multi-area dynamics in the grasp network represent a repertoire

of hand movements was unclear. Dimensionality reduction

methods and multivariate methods in general provide excellent

means of studying latent dynamics and neural manifolds of a

neuronal population and have been widely used in neuroscience

(Humphrey et al., 1970; Briggman et al., 2005; Gallego et al.,

2017; Jazayeri and Afraz, 2017). Moreover, multivariate brain-

behavior correlational methods such as CCA might better un-

cover behaviorally relevant dynamics rather than characterizing

the neural manifold in isolation (Sani et al., 2020; Jazayeri and

Afraz, 2017). CCA specifically uncovers simultaneous neural

and kinematic transformationswhen identifyingmaximally corre-

lated neural and kinematic trajectories; these appear to be signif-

icantly more revealing than one-to-one or many-to-one regres-

sion-based methods.

An interesting finding in our study was the observation that the

neural manifolds of both finger and grasping spanned the grasp

network. In contrast, past work had dichotomized the neural

control of individual fingers as local to primary motor cortex

(Beisteiner et al., 2001; Indovina and Sanes, 2001; Sanes et al.,

1995; Schieber and Hibbard, 1993), while viewing grasping ac-

tions to be controlled by a distributed network. A potential

reason for this view is the general belief that unlike single-finger

movements, grasping actions involve multi-jointed whole hand

postures (Schaffelhofer and Scherberger, 2016; Leo et al.,

2016; Borra et al., 2017). However, early biomechanical data

hinted that even single-finger movements, do in fact, require as

many multi-jointed synergies as prehension postures (Todorov

and Ghahramani, 2004; Schieber, 1995; H€ager-Ross and
Schieber, 2000). Indeed, our kinematic data here revealed that

single-finger movements involved active covarying control of

the entire hand and required as many significant synergies as

grasping (see also Kirsch et al., 2014). It is therefore likely that

complex hand control, whether it be finger individuation or

grasping, may necessitate activity in the entire grasp network.

While parietofrontal and sensorimotor nodes of the grasp

network have been well defined for hand control, of particular in-

terest is the role of supramarginal gyrus. From a functional

neuroanatomical point of view, the supramarginal gyrus is close

to the angular gyrus in the inferior parietal cortex and is thought

to encode self-awareness of the hand. For example, disruption

of activity in the supramarginal gyrus using cortical stimulation

resulted in finger agnosia (Roux et al., 2003), and prior fMRI

research has shown consistent activity in the supramarginal gy-

rus (SMG) during the execution of intransitive finger movements

(Jonas et al., 2007). Interestingly, activity in the supramarginal

gyrus has also been shown to encode the control of kinematic

hand synergies in humans (Leo et al., 2016), and the inferior pa-

rietal area has been well defined in both human and non-human

primates during grasping (Castiello, 2005, Buxbaum et al., 2006).

Our data thus provide novel evidence that the SMG encodes the

kinematic synergies of simple finger movements in a manner like

grasping. It should be noted however, that participants in our

study performed free-moving hand movements; further work is

necessary to understand whether there is a difference in grasp

network recruitment for prone hand movements versus hand

movements in space where accessory muscles might be re-

cruited for stabilization during individuation. We note however,

that our rather stringent criteria for synergy detection uncovered

multiple kinematic synergies during finger individuation in both

joint position and angle space.

Our results here also highlight how an entire repertoire of com-

plex handmovements, including finger individuation, can be rep-

resented without a rigid somatotopy by a common distributed

network spanning multiple cortical areas, specifically outside

of the ‘‘hand knob’’ in primary motor cortex (Ejaz et al., 2015;

Sanes et al., 1995; Schieber and Hibbard, 1993). Of particular in-

terest is the distributed neural control of the human thumb. The

use of an opposable thumb is thought to be a defining property

of dexterous hand actions, not just in humans (Napier, 1955,

1960; Young, 2003) but also in other primates species, notably

in the capuchin monkey (Mayer et al., 2019; Truppa et al.,

2016). The human thumb has a tendinous and musculoskeletal

structure distinct from the other four fingers and allows greater

simultaneous rotation and flexion/extension (Napier, 1955). Not

only did thumbmovements recruit activity over the entire distrib-

uted grasp network, but our representational analyses also

revealed that the centroid of the thumb movement’s LFO distri-

bution was the most discriminative compared to all other move-

ments. It was also closer to grasping than the other four fingers,

highlighting the importance of the opposable thumb in complex

prehensile movements.

Low-frequency oscillatory dynamics
In this study, we used LFOs as a correlate of neural activity; LFOs

in ECoG are widespread over varied motor cortical regions (Ku-

bánek et al., 2009; Miller et al., 2007), have been shown to be
Neuron 110, 154–174, January 5, 2022 169
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linked to motor control (Ramanathan et al., 2018; Bansal et al.,

2011; Rickert et al., 2005; Pistohl et al., 2008; Paek et al.,

2014), and can be used to decode hand synergies (Acharya

et al., 2010)); similar low-frequency components inMEG (magne-

toencephalography) have also been shown to be coherent with

hand-movement profiles (Jerbi et al., 2007). Given the fact that

the repertoire of hand movements utilized a common whole-

hand control scheme, especially given the temporal and biome-

chanical coupling between joints, it wouldnt have been surpris-

ing if the dynamics of grasp-network LFOs were stable and pre-

served for themovement repertoire. Yet, although themulti-areal

neural covariance structure was preserved across movements,

latent neural dynamics were compartmentalized by movement

type with distinct behaviorally relevant submanifolds for each

hand movement. Our results thus show that multi-area meso-

scale dynamics during a movement repertoire, even for low-fre-

quency oscillatory dynamics , best represent the discrete hand

action being performed than a readout of motor output traces.

These results have applications with respect to ECoG in human

brain machine interface (BCIs) trials (Silversmith et al., 2021; Be-

nabid et al., 2019). Specifically, a hybrid decoding approach,

such as decoding both the neural dynamics corresponding to

the user’s discrete cognitive motor state in conjunction with

the readout of real-time kinematic motor output, can potentially

improve BCI decoding performance. Our results likely have clin-

ical relevance for stroke given that LFOs reorganize in perile-

sional cortex (Ramanathan et al., 2018) and are correlated with

abnormal flexor muscle synergies after stroke (Godlove et al.,

2016). Understanding how neural manifolds of LFOs represent

multiple normal and abnormal hand synergies post-stroke can

aid in designing rehabilitation schemes such as low-

frequency cortical stimulation to preferentially modulate hand

control (Khanna et al., 2021) or understanding the effects of pe-

ripheral nerve stimulation on cortical LFO manifolds (Tu-Chan

et al., 2017).

Differences between single-area cortical spiking and
distributed mesoscale dynamics
While distributed mesoscale ECoG signals are fundamentally

different signatures of neural activity than single and multiunit

spiking activity in primary motor cortex, it is quite possible

that there are sufficient similarities to warrant a comparison.

Notably, a single mesoscale ECoG channel likely reflects the

heterogeneous activity of around 105 neurons (Chang, 2015).

While it is difficult to relate ECoG LFOs to single neurons, it is

possible to suggest population level similarities. More specif-

ically, it is possible that there is an analogy between LFOs

measured using local field potential (LFP) recordings with mi-

crowire arrays (electrode tips are high impedance) and those

measured using lower impedance ECoG electrodes. For

example, prior studies in animals have shown that LFOs in

LFP correspond to population level spiking activity (Ramana-

than et al., 2018; Hall et al., 2014). In these studies, the local

single unit firing activity was closely related to ensemble popu-

lation dynamics, e.g., the spike population peri-event time

histogram (PETH) or simply the sum of all recorded spiking ac-

tivity. Because in both studies the LFOs could be recorded

across the array (albeit with spatiotemporal phase offsets), it
170 Neuron 110, 154–174, January 5, 2022
is quite likely that the ECoG LFO is an aggregate and related

mesoscale measure of similar phenomenon. Moreover, our

data suggest that mesoscale LFOs have a consistent phase

relationship with the low-frequency component of gH, a puta-

tive correlate of population spiking activity at the recording

channel. While further work is required to fully understand pre-

cisely how neural spiking over a relatively large cortical region

(e.g., 2–4 mm in size) is associated with ECoG LFOs and gH,

we suggest the possibility that population level spiking activity

and LFPs recorded using high-impedance electrodes are

related to our ECoG mesoscale LFO signals.

Our key finding of distinct latent dynamics for the hand-move-

ment repertoire is quite different from what is evident for move-

ment related spiking activity in primary motor cortex (M1), where

temporal patterns of latent neural dynamics are highly preserved

across varied movements (Gallego et al., 2018; Kaufman et al.,

2016; Churchland et al., 2012). One possibility for this difference

is that the shared low-frequency population level neural dy-

namics in M1 spiking activity might function as a more general

means of transmitting information to subcortical circuitry irre-

spective of the actual movement type (Kaufman et al., 2016;

Russo et al., 2018). Perhaps consistent with this possibility is a

recent study in rodents that found that movement triggered

low-frequency spiking and LFP activity in M1 were tightly phase

locked with similar activity in the striatum, which is a single syn-

apse downstream of M1 (Lemke et al., 2019). Also consistent

with this model is the recent finding that injection of LFO fre-

quency electrical currents after stroke in perilesional premotor

cortex can increase neural cofiring and improve finger control

(Khanna et al., 2021); computational modeling in this paper sug-

gested that this allowed enhanced propagation of activity pat-

terns to presumed cortical and subcortical targets.

How then can we compare our findings using ECoG to those

based on localM1 spiking? In contrast to population level activity

in local circuits, distributed ECoG LFOs do not demonstrate

temporally preserved, movement-triggered single-trial modula-

tions in power at the population level as robustly as spiking activ-

ity. Instead, grasp-network dynamics are distinct with distin-

guishable phases or inter-areal timing differences in mesoscale

activity for the repertoire. Rather than serve primarily to transmit

downstream information to subcortical regions, ECoG LFOs

might correspond to cross-area population coupling within a

distributed network. Recent work suggests that such cortico-

cortical coupling represents a distinct communication sub-

space, which can be separated from movement potent signals

(Veuthey et al., 2020; Semedo et al., 2019). Interestingly, inacti-

vation of an upstream area showed that themovement subspace

is distinguishable from the communication subspace (Veuthey

et al., 2020). Thus, it is quite possible that low-frequency ECoG

mesoscale cortical dynamics are generally weighted toward

communication subspaces across the grasp network necessary

to discretely select and plan the appropriate synergistic gestures

for each hand movement. This further suggests that there are

separable and consistent ‘‘pathways’’ for the propagation of in-

formation across the distributed grasp network for each move-

ment type. This might allow rapid and precise feedforward

communication for each movement type; it might also permit a

straightforward means to incorporate sensory feedback.
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It should also be noted that notwithstanding the differences

between local population spiking activity and multi-areal meso-

scale recordings, it might also be the case that the complexity

of hand movements might elicit mesoscale dynamics that are

fundamentally different from M1 population spiking data during

well-learned and stereotyped upper-arm movements. For

instance, recent studies have shown that the latent dynamics

of even local population activity in M1 can be highly variable

from movement to movement during grasping actions (Suresh

et al., 2020; Rouse and Schieber, 2018). Although participants

in our study performed pantomimed movements, it may be

that multi-area neural dynamics might differ if the hand were to

actually interact with objects during both grasping and finger

movements (e.g., using the index finger to flip a switch). Interac-

tion with an object can further alter the compartmentalization of

neural dynamics in the grasp network (Michaels et al., 2020;

Russo et al., 2020), and the resultant extrinsic inputs can result

in more tangling of the latent mesoscale neural dynamics (Russo

et al., 2018).

Summary
In conclusion, we present here a neural framework highlighting

how distinct manifolds of mesoscale ECoG dynamics within

the grasp network represent a repertoire of human hand move-

ments; this might be a mechanism through which humans can

rapidly switch among a repertoire of complex hand movements

that are kinematically similar. Extending our framework to clinical

populations and to naturalistic hand interactions with daily ob-

jects can aid in further understanding the function of large-scale

neural manifolds for dexterous human hand control.
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Reagent or resource Source Identifier

Deposited data

ECoG Recordings This paper N/A

Kinematic Recordings This paper N/A

Software and algorithms

MATLAB 2020b MathWorks https://www.mathworks.com/

Poser 11 Bondware https://www.posersoftware.com/

demixed Principal Component Analysis (Kobak et al., 2016) https://github.com/machenslab/dPCA

Tensor Maximum Entropy (Elsayed and Cunningham, 2017) https://github.com/gamaleldin/TME

ECoG Cortical Visualization (Hamilton et al., 2017) https://github.com/libertyh/img_pipe/tree/matlab

LeapMotion SDK LeapMotion https://developer.leapmotion.com/

LeapMotion to MATLAB Interface LeapMotion https://github.com/jeffsp/matleap

Other

RZ2 BioAmp Processor Tucker-Davis Technologies https://www.tdt.com/

PZ5M-512 Neurological Amplifier Tucker-Davis Technologies https://www.tdt.com/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be addressed to and will be fulfilled by the lead contact of the study, Karunesh

Ganguly, M.D, Ph.D., Karunesh.ganguly@ucsf.edu.

Materials Availability
This study did not generate new unique reagents.

Data and code availability
d All data reported in this paper will be shared by the lead contact upon reasonable request.

d The dPCA algorithm is publicly available (https://github.com/machenslab/dPCA) and the tensor maximum entropy algorithm

(TME) is publicly available (https://github.com/gamaleldin/TME). Cortical visualization of ECoG activity was done using a pub-

licly available package (https://github.com/libertyh/img_pipe/tree/matlab). Interfacing of LeapMotion to MATLAB for real-time

synchronized data acquisition of kinematic and neural data was done using publicly available packages (https://github.com/

jeffsp/matleap) and via the LeapMotion SDK (https://developer.leapmotion.com/). All analyses were conducted inMATLAB us-

ing previously published methods and hand visualization analyses was done using proprietary software (Poser, Bondware,

https://www.posersoftware.com/). For modifications of publicly available code packages as pertaining to this study, for

real-time data acquisition code synchronizing LeapMotion, MATLAB and the ECoG TDT systems, for ECoG neural signal pro-

cessing, for representational-structure based static analyses of grasp network activity, for neural manifold based analyses, for

phase coupling analyses and for synergy based kinematic analyses, all enquiries will be fulfilled upon request to the lead con-

tact of this study.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Participants
We recruited in total five patients (twomale, three female, mean age 31.2 years) undergoing clinical monitoring for epilepsy at UCSF’s

Department for Neurological Surgery. Each patient was implanted with high-density electrocorticographic surface grids (256

channels, 4mm pitch) and electrode strips covering the motor, sensory, frontal and parietal cortical regions. The placement of the

electrodes was for the purposes of identifying foci of seizures. The coverage of the grids was left hemispheric for three of the five

participants. Four of the five participants performed all self-paced grasping and individual finger movements; these four subjects
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form the main study dataset to address our hypothesis of grasp-network neural activity. Two of these four participants also per-

formed cue-based thumbmovements and the final 5th subject was able to perform only cue-based thumbmovements due to clinical

time restraints. All hand movements were contralateral to the recording ECoG grid. All patients gave their informed consent to partic-

ipate in the study protocol as approved by the UCSFCommittee onHumanResearch and all procedures were approved by the UCSF

Institutional Review Board (IRB).

METHOD DETAILS

Experimental design and data acquisition
The task required participants to perform the following eight self-pacedmovements: flexion/extension of each finger and pantomime

of three types of grasping movement (pinch, tripod and power grasp). For the pinch grasp, participants were instructed to imagine

picking up a small object using their thumb and index finger. For the tripod grasp, participants were instructed to imagine picking up a

larger object such as a pen/marker with their thumb, index and middle fingers. For the power grasp, participants were instructed to

imagine picking up/grabbing a larger object using all their fingers. The evolution of these three specific types of graspmovements are

thought to be essential for human prehension, and are thought to underlie all human hand grasping actions in general (Young, 2003,

Napier, 1960). Participants performed the self-paced movements sequentially and not randomly. For example, participants per-

formed cycles of self-paced thumb movements continuously, rested for a few minutes, then performed index movements and so

on, finishing with the grasping movements. Two of the four participants also performed cue-based thumb movements and the final

fifth participant was able to perform only cue-based thumbmovements due to clinical time constraints. In the cue-basedmovements,

participants were instructed to perform the movement when they viewed a ‘Go’ cue and they were given 3 s to perform the move-

ment. Prior to theGo cue, a ‘Ready’ cuewas presented for a variable length between 1.5-2 s to alert them of theGo cue. Following the

completion of 3 s after the Go cue, a ‘Rest’ cue was presented for 3 s. This cue-based design was repeated for about 25 trials on

average per participant. Participants performed free unconstrained hand movements in space, although their forearm and elbow

was supported by a pillow.

Continuous neural data was sampled at 3052Hz with a PZ2 amplifier connected to a RZ2 Tucker-Davis recording systems (TDT)

and was hard-referenced to a separate reference electrode outside of the recording grid. Concurrent kinematic data was simulta-

neously recorded using the LeapMotion system at a sampling rate of approximately 100Hz. Custom code in MATLAB was written

to use the Arduino board to generate synchronized time-markers online in the kinematic and neural data streams. All analysis and

processing of data were performed in MATLAB (Mathworks Inc.)

Sample size estimation
We did not perform a priori sample size estimation, especially given the rarity in obtaining invasive brain data of this nature. We relied

on previously published reports in the literature for similar work that utilized a comparable sample size. The majority of our analyses

were performed on single subjects and replicated across subjects. Our analyses did not require randomization or blinding, and sub-

jects were recruited based on ECoG grid coverage that was implanted purely for the purposes of clinical monitoring for epilepsy and

subjects were excluded if there were any clinical constraints or if their grid coverage did not encompass cortical areas specific to

our study.

ECoG signal processing
Collected neural data were first down sampled to 508Hz, and notch filters were used to remove line noise at 60Hz and its relevant

harmonics. Data were then visually inspected to identify bad channels that did not record any meaningful, noise-free neural activity

and were removed from further analyses. We also visually examined data for artifactual epochs; these time-periods were marker for

further removal after synchronization with kinematic data. We then applied a common median reference to the raw ECoG signals.

Low frequency oscillations (LFOs) were defined in this study to be ECoG activity within the d frequency band of 0.5-4Hz. To extract

LFOs, we applied a 4th order IIR band-pass filter to ECoG data within the frequency range of 0.5 and 4Hz. To extract the envelope of

the LFO, we applied the Hilbert transform and extracted the analytic amplitude at each channel. An additional processing step

involved z-scoring channel data that is very commonly used in ECoG-based analyses (Silversmith et al., 2021). For representational

similarity analyses, channel data were z-scored across movements to preserved differences in mean activity between movements.

For manifold based analyses (such as PCA or CCA) that depends on covariance, channel data were z-scored (thereby mean-

centered) within each dataset individually, as the mean does not inform on covariations. Note that z-scoring has the additional

step of re-scaling each channel’s data by the standard deviation around its mean; however we found that re-scaling did not have

any effect on either our representational or manifold based analyses as all channels’ raw or filtered activity exhibited very similar vari-

ation around its mean in all hand movement datasets. With regard to high-gamma analyses (Chang, 2015), we applied a 4th order IIR

bandpass filter to the raw ECoG data with limits of 70-150Hz. The Hilbert transform was then applied to bandpass-filtered data and

high-gamma amplitudes, gH, was given by the analytical amplitude of the Hilbert transform. For analyzing the relationship between

LFOs and gH, the sampling rate of the data was maintained at 508Hz. To extract the low-frequency component of gH, i.e., g
LFO
H , a

second filtering step was applied wherein high gamma amplitudes were band pass filtered within the 0.5-4Hz range using the 4th

order IIR band-pass filter. Here on out, when we mention LFOs we imply the envelope of the d band oscillation and when we spe-
e2 Neuron 110, 154–174.e1–e12, January 5, 2022
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cifically mention LFO oscillations we refer to the d band oscillation alone without the envelope. Similarly when we mention gLFO
H we

refer to the low-frequency component of high gamma amplitudes.

For exploring the relationship between the manifolds of neural activity (either LFOs or gLFO
H ) and kinematics, data for both were

down sampled to 25Hz in time-synchrony with each other followed by Savitzky-Golay smoothing (2nd order filter with a span of

400ms, (Pistohl et al., 2008)). After synchronization with kinematic data, whenever artifactual epochs or time-periods were removed

in either neural or kinematic data streams, the corresponding epoch was removed from the other data stream. Using the kinematic

data, we created neural epochs or trials based on a full cycle of flexion/extension in the case of self-paced finger movements or a full

cycle of opening/closing in the case of self-paced grasping movements. In the self-paced experiments, there was variability in the

exact amount of time it took to start and execute a full self-paced cycle as there was no experimental cue for each trial. For this

reason, we normalized the length of each trial to 3s and accordingly interpolated each epoch of neural data to have 75 samples

at 25Hz (0 s to 2.96swith aDt = 40ms).We thenwere able to average across trials with a consistent time-scale or alternatively concat-

enated data across trials based on the analysis. For the cue-based movements, we extracted epochs of data from 500ms before the

Go cue to 3s after the Go cue; each epoch was therefore consistently 3.5s of length. Note that our results were robust to how we

epoched our neural data i.e., our main findings remained unchanged even when we epoched data around peak flexion/closing

without trial length normalization.

Movement related information in grasp-network LFO amplitudes
Representational structure in grasp-network LFO amplitudes

To establish the relationship between LFOs and movement, we evaluated whether there was a representational structure in mean

grasp-network LFO activity i.e., the static property of the grasp network corresponding to the location of each movement’s neural

data in high-dimensional channel space. Specifically, we wondered whether the movements’ mean LFO activity exhibited a unique

set of similarity patterns similar to prior fMRI work in local M1 regions (Ejaz et al., 2015), that had shown for instance, that mean voxel-

wise activity for pinky and ring movements were more similar than to thumb movements. Notably, Ejaz et. al. had shown that such

neural similarity patterns follow the kinematical coupling pattern between fingers, where the thumb is individuated distinctly while the

pinky and ring fingers are usually co-active. However, such a representational structure in mean cortical activity has not been shown

at the level of the mesoscale grasp network and in relation to both finger and grasping movements simultaneously. To ascertain the

representational structure in grasp-network LFOs, we evaluated the pairwise statistical distance Dij between the neural centroids of

any two movements’ channel LFO distributions (assumed to be multivariate Gaussian) within a participant using the Mahalanobis

distance metric:

Dij = ½mi � mj�u
hSi + Sj

2

i�1

½mi � mj�

Here, mi˛Rch31 and mj3Rch31 are vectors denoting the multidimensional mean LFO amplitudes across channels, averaged over time

for movements i and j, and Si˛Rch3ch and Sj ˛Rch3ch are the corresponding multidimensional variance-covariance matrices be-

tween channels’ time-varying LFO amplitudes. The Mahalanobis measure therefore is the pairwise distance between any two move-

ments’ multidimensional channel means scaled by the pooled multidimensional variance. For accurate comparisons and as detailed

earlier, we utilized a common baseline to z-score channel LFO amplitudes (z-scoring channel data across all movements) to preserve

between-movement differences inmean LFOs. The above procedure resulted in the construction of a symmetrical distancematrix for

each participant D˛R838 whose entries contained all the pairwise distances between movements. We then assessed the similarity

between participants’ distance matrices. Specifically, upper-diagonal entries of each participant’s distance matrix (note that the dis-

tance matrix is symmetric) were collapsed into one vector and correlated with similar vectors from other participants (Ejaz et al.,

2015). The mean correlation value formed the statistic of similarity in participants’ representational content. Significance was as-

sessed by a permutation procedure wherein the movement labels were swapped within each participant when computing the dis-

tance matrix and subsequently the mean correlation value. This procedure was performed 1000 times to generate a null distribution

of mean correlation values under the null hypothesis that there is no representational structure in LFO distributions across partici-

pants. To parcellate the similarity patterns between movements’ LFO distributions, we performed hierarchical clustering on the

average Mahalanobis distance matrix using Ward’s criterion (Theodoridros and Koutroumbas, 2003) and depicted the result by a

scaled dendrogram.

Apart from theMahalanobis distance analyses, we also utilized amore traditional classification approach to evaluate the represen-

tational structure in LFOs. We used a linear Support Vector Machine (SVM (Fan et al., 2008)) with channels as features and instan-

taneous LFO amplitudes as observations. Here, the instantaneous LFO amplitudes are fluctuations aroundmean d band envelope for

each channel, and the SVM linear classifier evaluated the separability between movements in terms of the channels’ fluctuations

around the mean activity. A pairwise SVM is a linear hyperplane that maximizes the margins between the observations of two data-

sets and aims to discriminate time-periods when a participant was performing a particular type of handmovement from time-periods

corresponding to the second movement. The linear classifier is essentially a vector WSVM that weights each channel’s LFO ampli-

tudes XLFOðtÞ at any time t; a two-class SVM discriminates the two movements (with class labels 1 and � 1) based on the sign of

the inner product between channels LFO activity and WSVM, i.e.,
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classA : Wu
SVMXLFOðtÞ>0
classB : Wu
SVMXLFOðtÞ<0

We contrasted each movement against all other movements individually in a pairwise manner (e.g., thumb versus index, thumb

versus middle etc.), within each participant. Within each contrast, we averaged results from four-fold cross validation wherein within

each fold 70% of the data was randomly selected to train the SVM and the remaining 30% formed the testing set. The SVM’s slack

parameter was computed from the 70% training data. Importantly, although eachmovement had a distinct number of sample points,

the training dataset was balancedwith an equal proportion of bothmovements’ time-periods. However, since the testing dataset was

imbalanced, we evaluated the classifier performance via the term balanced accuracywhich is the average of the sensitivity and spec-

ificity of the SMV model’s performance on held out data. The SVM model’s sensitivity is given by the ratio of

sensitivity =
True Postives

True Positives+False Negatives

and its specificity is given by

specificity =
True Negatives

True Negatives + False Positives

both computed from the held out test data samples. Balanced accuracy is then the average of these two numbers. To obtain con-

fidence intervals and test the statistical significance of the SVM model, we used Bayesian statistics. Specifically, we modeled both

sensitivity and specificity as Binomial distributions for which the beta distribution is the conjugate prior (Bishop, 2006). For example,

the beta distribution for sensitivity is proportional to:

pðmÞfma�1ð1� mÞb�1

where m is the random variable describing the distribution of values around true sensitivity. The mean or expected value of this var-

iable is given by

EðmÞ = a

a+b

which as it can be seen shares a close relationship with the actual formula for sensitivity i.e., a=No: of True Positives and b =

No: of False Negatives. Thus pðmÞ defines a distribution around the estimated value of sensitivity; the width of this distribution de-

pends on the number of held-out test samples. The parameters a and b are thus hyperparameters and are initially chosen to be

both equal to 1 which results in the beta distribution being a flat or uniform prior i.e., pðmÞ is a constant for all possible values of m.

Given the number of samples from the held out data, the parameters a and b are then updated or added with the number of true

positives and false negatives. In this manner, we can update the sensitivity of the model i.e., EðmÞ and the pdf pðmÞ around the

mean sensitivity from the held out test samples. Similarly, we can generate another pdf pðaÞ for the specificity of the model along

with EðaÞ from the held out test samples where a is a random variable for the possible values of specificity. Note that these pdfs

need to be appropriately normalized so that they sum to one (see chapter two of (Bishop, 2006) for full details). The balanced accu-

racy can then be computed as the average of the random variables m and a defining sensitivity and specificity respectively. The

average (or sum) of two random variables is a linear operation which results in the convolution of the pdfs of the two random variables.

The pdf for balanced accuracy is thus given by:

pðhÞ = pðmÞ � pðaÞ
where h is the random variable describing the possible values of balanced accuracy, EðhÞ is the mean of this distribution and � is the

convolution operator. As before, this pdf should be normalized so that it sums to one. In this manner we can generate pdfs of sensi-

tivity, specificity and balanced accuracy of the SVMmodel from its performance on testing data. The significance of the SVMmodel

and p value can then be easily obtained by evaluating the integral of the pdf pðhÞ to the left of 0.5 or 50%. This procedure of computing

the balanced accuracy of a pairwise SVM model and its associated p value was performed for all pairwise comparisons across all

subjects.

The obtained pairwise balanced accuracies were then used to build a symmetric matrixD˛R838 where any entryDij is the balanced

accuracy of themodel when discriminatingmovements i and j. We built suchmatrices for each subject and averaged across subjects

to obtain the average classification distance between all movements. We then examined the averaged matrix for a representational

structure i.e., if the activity around mean grasp-network LFOs of some movements were closer to others and more likely to be mis-

classified between them. For instance we can examine if pinky finger movements tended to be misclassified more as ring finger

movements. To this end, we performed hierarchical clustering on the average pairwise matrix using Ward’s criterion and statistically
e4 Neuron 110, 154–174.e1–e12, January 5, 2022



ll
Article
evaluated the misclassifications using mixed effect models. We also used the individual pairwise classifiers in a multi-classification

framework using a max-vote strategy wherein the movement that won the maximum number of classifications from each pairwise

classifier was assigned to the testing data-point.

Phase-coupling of ECoG LFOs to kinematics
To further establish the relationship between LFOs and movement, we first evaluated whether the amplitude of LFOs peaked at

preferred phases of movement. For finger movements, the main phases of movement corresponded to flexion and extension,

and for grasping movements they corresponded to opening and closing of the hand. A phase of pwas considered as full flexion (fin-

gers) or full closing (grasps) and a phase of 0 or 2pwas considered full extension (fingers) or full opening (grasps), phases in between

0 and p constituted the flexion/closing cycle and phases in between p and 2p constituted the extension/opening cycle. Within each

trial and for each channel, we then identified the preferred phase of movement when LFO amplitude peaked. We identified similar

such preferredmovement phases when LFO amplitudes peaked for all trials. Under the null hypothesis, one would expect a circularly

uniform density of preferred phases, suggestive of no relationship between LFOs and kinematics. We tested this hypothesis at each

channel using the Rayleigh test in the circular statistics toolbox (Berens, 2009). In this manner, we were able to identify channels

whose LFO envelopes peaked at preferred phases of movement. A nominal significance threshold of a= 0:05 was used to identify

the cortical network of channels whose LFOs were significantly phase-locked to movement. We performed this analysis for each

movement and subject individually. Channels that exhibited significant phasic relationships were assigned a value of 1 and non-sig-

nificant channels were assigned a value of 0. Such a binary mask of significant channels was identified for each movement and sub-

sequently aggregated across movements. Channels that consistently exhibited significant phase relationships across movements

would have higher aggregated values and therefore deemed to have relatively higher locking to LFOs to kinematics than channels

that were significant in only a few of the eight movements.

Neural manifold analyses
To understand the neural manifold based on the multi-area neural covariance structure, PCA was applied to trial-concatenated,

mean-centered data individually for each participant and movement. Let Xa˛Rt3ch denote an individual z-scored neural dataset

for a particular movement a, where t denotes the time-samples across trial concatenated data, with the number of channels given

by ch. PCA uncovers an orthonormal basis D˛Rch3ch that captures directions of maximal variance wherein each column of D is a

neural mode or principal component identifying multi-areal channels with covarying neural activity. The variance accounted for by

k PCs for the movement a can be estimated using the reconstruction formula:

RðaÞ2k =
jjXajj2 �

����Xa � XaDkD
u
k

����2
jjXajj2

Here, the norm of the matrix terms in the above equation is the sum of the squared values of the elements of the matrix. Results re-

vealed that on average across movements 45 PCs captured at least 75% of the neural VAF in trial concatenated data, resulting in a

low-dimensional neural manifold given by the first 45PCs i.e., D45
a ˛Rch345 for movement a. Note that the neural modes can be visu-

alized on the cortical network as it assigns a weight for each channel, allowing us to compute the average weight within each node of

the grasp network. Specifically, we defined rough Brodmann Area-based regions of interest (ROI) identifying primary motor cortex

(M1), sensory cortex (S1), ventral and dorsal premotor cortices (PMv, PMd), parietal cortex (PPC) and supramarginal gyrus (SMG) and

quantified the average channel weight within each ROI across all 45 neural modes.

Having identified the manifold for each movement, we then computed whether the 45D manifolds were oriented similarly in high-

dimensional channel space using the method of principal angles (Björck and Golub, 1973, Gallego et al., 2018, Meyer, 2000). In the

cases of two lines, this trivially reduces to the angle between the lines. In the case of subspaces or higher-dimensional manifolds, the

angles are not so trivial as there are infinite combinations of lower dimensional flats between the manifolds. However, one can find

principal directions within the manifold (which are linear combinations of the basis of the manifold) such that they produce the small-

est possible angles between the two manifolds. In our data here, the neural modes form an orthonormal basis for the manifold as a

consequence of the PCA step. We then computed the singular value decomposition (SVD) of the dot product matrix between the two

manifolds for any two movements a and b by the formula

PaSPb = SVD
�
D45

a

u
D45

b

�
where S is a diagonal matrix whose entries are the cosine of the 45 ordered principal angles (smallest to largest) i.e.,

S = diagðcosðq1Þ; cosðq2Þ.cosðq45ÞÞ
Pa and Pb of size R45345 are the ordered principal directions i.e., directions within the manifolds of movements a and b that have the

associated principal angles between the twomanifolds. As it can be seen, there are as many principal angles as the dimensionality of

the manifold. Using the SVD, we computed the principal angles between all pairs of neural manifolds across all four participants.

Given the 8movements in the study, there are 28 such pairwise comparisons per participant. Under the null hypothesis that themani-

folds would not be more similar to each other than what would be expected b chance, we would not expect a difference between the
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observed principal angles from a null distribution of principal angles. To construct the null distribution of principal angles, we turned to

the tensormaximum entropymethod (TME, (Elsayed andCunningham, 2017)) that was developed and applied in the context of simu-

lating smoothed spiking waveforms in M1 when a monkey performed varied tasks (Gallego et al., 2018, Elsayed and Cunningham,

2017). Full details on the method and associated code can be found in the original paper by Elsayed and Cunningham, here we detail

the main approach. Briefly, each participant’s neural data can be considered as a 3D tensor of dimensions Rch3t3mvmt. The first two

dimensions are channels and time samples and the third dimension represents the 8 handmovements in the study.We used the TME

method to simulate null tensors of data while respecting the first and second order moments (i.e., mean and covariance) along the

second and third tensor but not along the channel tensor. By not simulating the channel covariance structure in the real data, wewere

able to simulate data without a channel covariance structure but respecting all other 1st and 2nd order statistics of the data. After

simulating a tensor of data, we applied PCA to identify themanifolds in the simulated data and evaluated the principal angles between

the simulated manifolds. By iterating through this procedure 1000 times, we were able to generate a null distribution of principal an-

gles and test the hypothesis of a preserved neural manifold in the real data. Given that the exact number of trials and hence the time-

samples of trial-concatenated data were not similar movement to movement, we periodically subsampled trials when computing

principal angles and running the TME code to ensure that the 3D tensor was consistent. If two manifolds were similar to each other,

then their principal angles would be smaller than the null distribution of principal angles, assessed at the a= 0:01 level.

To evaluate the whether the manifolds across movements shared variance with each other in a commonmulti-areal subspace, we

computed the ratio of the across-movement VAF towithin-movement VAF (Gallego et al., 2018). Thewithin-movement VAF is nothing

but the variance captured when projecting each movement’s data onto its own 45Dmanifold. The across-movement VAF is the vari-

ance captured by projecting data from movement a onto the 45D manifold of movement b. The equation for computing the across-

task VAF is given by:

R2ða;bÞ = kXak2 � kXa � Xa DbPbðDbPbÞuk2
kXak2

The ratio of across-movement to within-movement VAF, R
2ða;bÞ
R2ðaÞ was then computed for all pairwise comparisons. To obtain a surro-

gate distribution of themaximal across-movement to withinmovement ratios, we first generated random 45Dmanifolds and used the

QR decomposition to obtain an orthonormal basis for the random 45Dmanifold. Data from eachmovement were then projected onto

the orthonormal basis of this random manifold to compute the across-movement variance. We iterated this procedure 1000 times

and within each iteration computed the maximal ratio of the null across-movement to within-movement VAF. We carried the above

manifold analyses steps for both LFOs and gLFO
H in the grasp network.

demixed Principal Component Analysis to evaluate latent dynamics
Given that our results showed that all movements shared a common neural manifold, we then sought to understand whether latent

neural dynamics within the common multi-areal neural subspace were temporally shared by the different hand movements using

demixed Principal Component Analysis or dPCA (Kobak et al., 2016). Full details on the method can be found in the paper by Kobak

et. al., here we focused on the main details of the method as it pertains to our data. By design, the objective function of dPCA is to

build a common neural subspace or all movements and find dPC neural modes that correspond to two forms of neural activity: 1)

time-varying activity that is common to all movements and is independent of the movement-type i.e., via time dPCA modes and

2) time-varying activity that is specific to the type of movement being performed outside of the common activity i.e., via move-

ment-specific modes. The two types of dPCA modes therefore de-mix the neural data and projecting LFOs onto these modes

capture latent neural dynamics that are either common to, or dependent on, the type of movement. dPCA was performed on trial-

averaged data to better uncover latent modes. Note that the use of dPCA is justified andmeaningful given our finding that a common

multi-areal manifold represented all hand movements. We fit a dPCA manifold of the same dimensionality as the PCA manifold for

consistency in analyses (which was 45D).

For each participant, the neural data for all movements was first arranged in a 3D tensor X˛Rch383t, where ch is the number of

neural channels and t is the 75 time samples corresponding to 3 s of data (trial averaged) at 25Hz for the 8 conditions. This tensor

was then collapsed into a single data matrix of size X ˛ Rch38t. The data matrix X was then marginalized into the following terms:

Xt that represents the time-varying average neural activity across all 8 handmovements, Xm that represents the multivariate centroid

of each movement and Xtm that represents the movement-specific neural activity. The size of the Xt; Xm; Xtm are all the same as X by

replicating values. Pertinent to analysis here, Xt represents themovement-independent time-varying common neural activity in a trial,

and Xm; Xtm represent movement-specific neural activity above and beyond the common time-varying activity. Our primary interest

here was to understand Xt and Xtm the common time and movement-specific time-varying neural dynamics. Prior representational

analyses have already emphasized the properties of Xm, each movement’s centroid of channel distributions. We thus z-scored each

channel’s LFO activity for each movement, thereby placing the centroid of each movement at the origin ðXm = 0Þ. As detailed earlier

in the ECoG signal processing section, re-scaling via the z-scoring step did not influence dPCA results as all channels exhibited

similar variations around its mean across all hand movement datasets. The core dPCA function was then used to approximate

the original data matrix and the overall covariance of the tensor via the marginals i.e.,

X = Xt +Xtm +Xnoise
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C = Ct +Ctm +Cnoise

where C is the total covariance matrix, and Ct; Ctm are the covariance matrices for the marginals.

The loss function of dPCA is then given by:

Lt = kXt � FtDtXk2

Ltm = kXtm � FtmDtmXk2

where Dt; Dtm are the time and movement-specific dPCA modes respectively. Projection of neural data onto these modes i.e.,

Nt = DtX;

Ntm = DtmX

are the latent movement-independent neural dynamics and latent movement-specific neural dynamics respectively. Ft; Ftm are en-

coders transforming low-dimensional neural dynamics back into full channel space. The dPCA solvers for estimating Dt; Dtm; Ft;Ftm

uses the reduced rank regression algorithm and the user has to specify the number of dPCA modes to be identified by reduced rank

regression. We used 45 modes to keep our analyses consistent with results from the neural manifold analyses. To estimate the vari-

ance accounted for by the two types of dPCAmodes, we used the same formula as in the dPCApaper, where the subscript f˛ ðt; tmÞ
and | | denotes the sum of the squares of all the entries in a matrix:

R2
f =

kXk2 � kX � FfDfXk2
kXk2

We carried out the dPCA analyses on both LFOs and gLFO
H in the grasp network. If the latent neural dynamicswere distinct for the hand

movement repertoire, then one would expect the variance due to themovement-specificmodes to be higher than the variance due to

the time dPC modes.

Relationship between LFOs and gH

Phase-coupling of ECoG LFO oscillations to the low frequency component of gH

To evaluate the relationship between LFOs and gH at individual channels across the ECoG grid, we utilized the phase-locking value

metric (Canolty et al., 2012a; Canolty et al., 2006) to investigate the coupling between LFO oscillatory phase and the low frequency

phase of high gamma amplitudes i.e., gLFO
H . As detailed earlier in the ECoG signal processing section, gLFO

H is generated by performing

two filtering steps on the raw ECoG data i.e., d band pass filtering the amplitude of high gamma oscillations (70-150Hz). We per-

formed an additional Hilbert transform and extracted the phase time series of gLFO
H from the angle of the Hilbert transform, thereby

generating the time series of the low-frequency phase of high gamma amplitudes, fLFO
gH

ðtÞ. At the same time, raw ECoG data were

band-pass filtered in the LFO range of 0.5-4Hz alone to create the dðtÞ signal i.e., LFO oscillations. The phase time-series was ex-

tracted from dðtÞ via the Hilbert transform to obtain fLFOðtÞ.
We now have two time series, fLFOðtÞ which is the phase of LFO oscillations and fLFO

gH
ðtÞ which is the low-frequency phase of high

gamma amplitudes. If there is a relationship between LFO oscillations and high gamma amplitudes, then these two phase time-series

would be phase-locked to each other consistently across trials. This phasic relationship between the two signals can be evaluated by

the Phase Locking Value (PLV), as follows. First we computed the angular difference between fk
LFOðtÞ and fLFOk

gH
ðtÞ averaged over all

time-points t = 1;2.n within a given single trial k to obtain single trial estimates of the preferred phase angle (a single number in ra-

dians) between the two signals. We then evaluated the circular mean of the preferred phase angles across all k = 1;2.m trials to

obtain the PLV. The PLV is thus a single complex number computed for every channel; the strength of the coupling between the

two signals was obtained from the magnitude of PLV and the preferred phase difference between LFO oscillations and high gamma

amplitudes was obtained from the angle of PLV. If all trials have the same length, then the PLV can be obtained from the following

formula:

PLV =
1

m

Xm
k = 1

1

n

Xn
t =1

exp
h
i
�
fk
LFOðtÞ�fLFOk

gH
ðtÞ
�i

PACmag = jPLV j

PACangle = :PLV
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If there is indeed a consistent preferred phase difference between the two signals across trials, then the jPLV j (PACmag, the strength

of the phase amplitude coupling relationship between LFO phase and high gamma amplitudes across trials) will be significantly

greater than what could be expected by chance. To test for the significance in the strength of phasic coupling at each channel, sur-

rogate or null distributions were constructed by randomizing the LFO phase time-series fLFOðtÞ within each trial prior to estimate the

PLV. This randomization procedure was repeated 1000 times to generate a surrogate distribution of the PLV at each channel, allow-

ing us to test the strength of PACmag between the two signals at individual channels ða = 0:05, FDR corrected). We performed the

phase-based analyses at each electrode and individually within eachmovement for each subject. For each subject, we quantified the

percentage of channels that exhibited such significant PLV in at least one of the eight movements and aggregated significant chan-

nels across movements. Channels that consistently exhibited significant phase relationships across movements would have higher

aggregated values and therefore deemed to have relatively higher PLV between the two signals.

Shared variance between the manifolds of LFOs and gLFO
H

We evaluated the shared variance between the 45D multi-areal manifolds of both signals, LFOs and gLFO
H , using the percentage of

variance metric (Degenhart et al., 2020), which computes the percentage of variance in one signal’s manifold that can be captured

by the second signal’s manifold. If the manifolds of both signals shared significant variance with each other, this percentage should

be significantly greater than chance. We evaluated the shared variance between both signals’ dPCA manifold and their manifolds

from the PCA analysis. With respect to the dPCA manifolds, the shared variance in the dPCA manifold of gLFO
H that is also captured

by the dPCA LFO manifold is given by the following percentage of variance captured formula:

pdPCA
cap =

trace
�
ULFOU

u
LFOQgLFO

H
Qu

gLFO
H

ULFOU
u
LFO

�
trace

�
QgLFO

H
Qu

gLFO
H

�
where ULFO is an orthonormal basis of the 45D dPCA LFO manifold (obtained by the QR decomposition of the dPCA manifold) and

QgLFO
H

is the 45D dPCA manifold of gLFO
H . Similarly, we can also compute the shared variance in the dPCA manifold of LFO that is

captured by the dPCA gLFO
H manifold by finding an orthonormal basis for the gLFO

H dPCA manifold. Note that by dPCA manifold,

we refer to both the encoder and decoder subspaces from the dPCA analyses; we therefore computed the shared variance between

the two signal’s encoder and decoder subspaces using the pdPCA
cap formula relative to each other and averaged the four numbers to

obtain the shared variance between the two signals’ dPCA manifolds. The null distribution of the shared variance is computed by

finding pdPCA
cap of the dPCA manifolds of either LFOs or gLFO

H with random manifolds of the same size across 1000 iterations. We

can then assess the significance level of the shared variance between the two signals’ manifolds relative to the null distribution.

We performed this analyses for each of the four subjects’ individual dPCA manifolds.

Similarly, it is also possible to find the shared variance between the two signal’s manifolds from the PCA analyses. Note that in this

case the analyses has to be performed movement-wise to contrast the two signals’ individual manifolds across all movements and

subjects (8 movements3 4 subjects for a total of 32 comparisons). As the neural modes from the PCA step already define an ortho-

normal basis, the shared variance between the two signals can be obtained by evaluating the percentage of variance in one signal’s

manifold that is also captured by the second signal’s manifold for each individual movement’s neural data and with the following

formula:

pPCA
cap =

trace
�
DLFOD

u
LFODgLFO

H
Du

gLFO
H

DLFOD
u
LFO

�
trace

�
DgLFO

H
Du

gLFO
H

�
where DgLFO

H
is the 45D manifold of gLFO

H and DLFO is the 45D manifold with LFOs. While the above formula gives the shared variance

relative to gLFO
H , we can swap the terms in the numerator and denominator and obtain the shared variance relative to LFOs and take

the average of the two numbers. Note that the encoder and decoder matrices from the PCA analyses are the transpose of each other

and equivalent; we therefore evaluated the shared variance in the decoder subspace alone. The null distribution of the shared vari-

ance is obtained by assessing pPCA
cap of either the manifold of LFOs or gLFO

H with random manifolds of the same size across many it-

erations. We can then assess the significance level of the shared variance between the two signals’ manifolds relative to the null dis-

tribution. We performed this analyses for each movement across the four subjects.

Kinematic recordings of the repertoire of human hand movements
Weused the LeapMotion system to record instantaneous 3D position data of each joint in the human hand, the center of the palm and

the wrist. By default, the data is referenced to the world-coordinate system at the LeapMotion IR sensor. As a denoising step to filter

out kinematic data not pertaining to the actual movement, the data in the world coordinate system was projected onto the palm

normal, a 3D vector pointing orthogonal to the inner surface of the palm, and subsequently referenced to the palm center. This pre-

processing step ensures that irrespective of the orientation and position of the hand in 3D space, only task-specific joint data is

collected. Data were then visually inspected for artifactual epochs that were then removed. The kinematic dimension of data was

75, corresponding to the 3D position of 5 segments: the wrist, interphalangeal joints (MCP, PIP, DIP) and the endpoint bone, for
e8 Neuron 110, 154–174.e1–e12, January 5, 2022



ll
Article
each of the 5 fingers of the hand. Given the anatomy of the thumb, theMCP and PIP were considered equivalent. Kinematic data was

high-pass filtered above 0.1Hz and smoothedwith a Savitzky-Golay filter (2nd order filter with a span of 400ms, (Pistohl et al., 2008)) to

remove drift. Kinematic data were then down sampled to 25Hz in conjunction with neural data. Similar to neural data, we normalized

the length of each kinematic trial to be 3 s i.e., 75 data samples at 25Hz.

Handmovements are known to exhibit significant temporal and biomechanical coupling between joints and are thus of much lower

dimension that the original joint data. These covariation patterns are called synergies in the kinematic literature; it is thought that the

brain preferentially represents synergies rather than individual muscles or joints (Ejaz et al., 2015, Leo et al., 2016), thereby greatly

reducing the complexity of control given the large number of degrees of freedom in the hand. To identify kinematic synergies, we

applied PCA to the trial-concatenated kinematic data matrixD˛Rt375, where t is the number of time samples across the 75 kinematic

dimensions (Ingram et al., 2008, Santello et al., 1998, Todorov and Ghahramani, 2004, Mason et al., 2001, Leo et al., 2016). We per-

formed the kinematic PCA analysis individually for each subject and movement. The resulting kinematic PCs or synergies represent

multi-jointed whole hand covariation patterns. Each coefficient in a kinematic PC assigns a weight to an individual joint in one of the

3D spaces. Apart from quantifying the number of PCs it required to account for 95% of the kinematic variance, we also sought to

understand the number of PCs statistically different from noise. To identify the number of statistically significant synergies from a

dataset, we used the Marchenko-Pastur (Marchenko and Pastur, 1967) criteria on the eigenvalues from the PCA step. Specifically,

based on random matrix theory, the bound for significance on the eigenvalues of the kinematic data matrix is given by

lthresh = s2

 
1+

ffiffiffi
1

q

s !2

Here, s2 is the variance of the overall kinematic dataset and q is a ratio between the number of observations/time-samples to the

kinematic dimensions (which was 75 in this study). Any eigenvector or PC that had an eigenvalue l> lthresh was identified as repre-

senting a significant kinematic covariation pattern or synergy in the dataset. Having identified the k number of significant synergies

Si˛R7531; i = 1;2::k, the temporal activation of each synergy Ai was computed by projecting the kinematic data through the corre-

sponding eigenvector, i.e., Ai = DSi; i = 1;2;::k. We averaged the temporal activation across trials to obtain the mean time course of

synergy activity and used the bootstrap method to obtain confidence intervals of the mean (trials were randomly sampled with

replacement multiple times before computing the average in a bootstrap iteration, with 1000 total iterations). For visualization of

the hand and synergy postures, we used Poser (Bondware Inc.) to animate the hand. We also identified synergies in joint angle

data apart from joint position data. To do this we used inverse kinematics to map joint position data to joint angle data using non-

linear least-squares; the dimension of the joint angle data was 25 corresponding to angular displacements along each of the five seg-

ments for all five fingers. PCA on the matrix of joint angle data uncovered the joint angle synergies.

Having identified each movement’s significant synergies, we then evaluated whether the kinematic subspace spanned by the sig-

nificant synergies involved whole-hand covariation for all hand movements, even for finger individuation. Note that we can also

examine the PC weights of the joints within each significant synergy; this allowed understanding whether finger synergies involved

covariation only along the segments of the finger being individuated or whether it involved multi-jointed covariation across the hand.

In addition, we used the methods of principal angles similar to our earlier procedure with the neural manifolds. Specifically, we

computed the SVD of the dot product between the k dimensional synergy subspaces of any two movements a and b as:

PaVP
u
b = SVD

�
Sk
a

u
Sk
b

�
where S is a diagonal matrix whose entries are the cosine of the k ordered principal angles (smallest to largest) i.e.,

S = diagðcosðq1Þ; cosðq2Þ.cosðqkÞÞ
Pa and Pb of size Rk3k are the ordered principal directions i.e., directions within the k dimensional synergy subspace of movements a

and b that have the associated principal angles between them. Using the SVD, we computed the principal angles pairwise between

the synergy subspaces of all movements. To construct the null distribution of principal angles, we turned to the tensor maximum

entropy method (TME, (Elsayed and Cunningham, 2017)) to simulate null tensors of kinematic data without joint position covariance

while respecting all other 1st and 2nd order statistics of the data. After simulating a tensor of data, we applied PCA to identify the k

dimensional synergy subspace in the simulated data and evaluated the principal angles between the simulated synergy subspaces.

By iterating through this procedure 1000 times, wewere able to generate a null distribution of principal angles and test the hypothesis

of a common multi-jointed kinematic subspace. Given that the exact number of trials and hence the time-samples of trial-concate-

nated data were not similarmovement tomovement, we periodically subsampled trials when running the TME code to ensure that the

3D tensor was consistent.

Kinematically aligned submanifold analyses
Canonical correlation analysis (CCA)

To understand kinematically aligned submanifolds, we used canonical correlation analyses (CCA) that is part of a family of low-rank

linear regression methods, such as reduced rank regression, partial least-squares etc. CCA was performed for each movement
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individually wherein time-varying latent neural dynamics within the movement’s 45D manifold ðXa ˛Rt345Þ was aligned to its top k

kinematic synergies (Xb˛Rt3k ; where k = 3 as used three synergies in this study). The main objective of CCA is to uncover pairs

of neural ðwa ˛R453kÞand kinematic CCA modes ðwb ˛Rk3kÞ such that the time-dependent activation of the modes generates maxi-

mally correlated pairs of low-dimensional neural and kinematic trajectories:

za = Xawa;
zb = Xbwb

The CCA neural modes therefore parcellate the larger neural subspace into a submanifold that captures kinematically-relevant neural

dynamics. Note that while the pairwise correlation between the neural and kinematic trajectories is maximized, the trajectories of any

given pair are orthogonal to other trajectory pairs:

zua za = I˛Rk3 k zub zb = I˛Rk3 k

thereby uncovering distinct aspects of control. The pairs of CCAmodes are arranged in decreasing order of correlation between their

projections. The dimensionality of the CCAmodes is equal to the dataset with the lower dimensionality which in our case was always

the synergy data.

The solution for CCA, i.e.,wa andwb, can be obtained in a number of ways and details on the proofs can be found elsewhere (Uurtio

et al., 2017); here we utilized a solver based on the singular value decomposition (Ewerbring and Luk, 1989) that allows for an imple-

mentation with robust statistics, as follows.

d First, the sample auto and cross covariance matrices are computed: Caa =
1

n�1X
u
a Xa; Cbb =

1
n�1X

u
b Xb and Cab = 1

n�1X
u
a Xb.

d Maronna’s M-estimators can be used to determine robust versions of the above covariance matrices, especially Cab to correct

for homoscedasticity and outliers automatically, thereby producing a robust version of CCA (Maronna, 1976, Maronna and Za-

mar, 2002).

d Next, the square root or Cholesky factors of Caa and Cbb are computed, C
1
2
aa and C

1
2

bb, respectively.

d Define a new matrix A = C
�u

2
aa CabC

�1
2

bb

d Decompose A=USVu using the SVD algorithm

d The modes are then given as wa =C
�1
2
aaU and by wb = C

�1
2

bbV

d Correlations between pairwise of projections of Xa and Xb <Xaw
r
a; Xbw

r
b>;c r = 1;2;.minðk;chÞ, is given by the singular values

sr from the rth diagonal entry of S.

To assess the predictive power of CCA, we used 10-fold cross validation, wherein within each fold 70% of the dataset was par-

titioned for training and the remaining 30% was partitioned for testing. The weight matrices wtrain
a , wtrain

b obtained from training the

CCA model on the training data Xtrain
a , Xtrain

b were applied to the testing data to create cross validated trajectories ztesta =Xtest
a wtrain

a

and ztestb = Xtest
b wtrain

b . The cross validated correlation was computed as diagðztesta
u
ztestb Þ to obtain cross-validated ri values for

each CCA trajectory i = 1;2:.k. To assess the significance of the correlation values, we used a permutation procedure commonly

used in regression-based analyses. Specifically, we broke the temporal relationship between Xtest
a and Xtest

b by randomly permuting

the time-course of each synergy activation in Xtest
b . These permutation procedures were done 1000 times prior to computing the cor-

relation between ztesta and ztestb to get a null distribution of ri values. Significance was assessed by counting the proportion of null sam-

ples that exceeded the true value of r2i , with multiple comparison correction via the False Discovery Rate (FDR) procedure (Benjamini

and Hochberg, 1995).

Distinctiveness of aligned submanifolds
To understand the distinctiveness of the aligned submanifolds, we used the method of principal angles to contrast movements’ sub-

manifolds in a pairwise manner. The first step involves finding an orthonormal basis for the column space of the submanifold by

applying the QR decomposition; unlike PCA the CCA neural modes are not constrained to be orthonormal even though the CCA tra-

jectories are orthogonal. We then computed the dot product matrix between the orthonormal bases of any two movements and

applied the SVD to obtain principal angles. Specifically,

PaSPb = SVD
�
Qu

a Qb

�
whereQa is the orthonormal basis of the submanifold for movement a,Qa is the orthonormal basis of the submanifold for movement b

and S is a diagonal matrix whose entries are the cosine of the k ordered principal angles (smallest to largest) i.e.,

S = diagðcosðq1Þ; cosðq2Þ.cosðqkÞÞ
where Pa and Pb of size Rk3k are linear combinations of the k orthonormal basis vectors of each movement’s submanifold respec-

tively. The resultant combinations of the basis vectors constitute the principal directions within eachmanifold. We computed the prin-

cipal angles between all pairs of aligned neural submanifolds across participants. Given the 8 movements in the study, there are
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28 such pairwise comparisons per participant. Under the null hypothesis, we would not expect a difference between the observed

principal angles between movements from a null distribution of principal angles. To construct the null distribution of principal angles,

we turned to the tensor maximum entropy method (TME, (Elsayed and Cunningham, 2017)). Each participant’s neural data can be

considered as a 3D tensor of dimensionsRch3t3mvmt. The first two dimensions are channels and time samples and the third dimension

represents the 8 hand movements in the study. We used the TME method to simulate null tensors of data while respecting the first

and second order moments (i.e., mean and covariance) along every tensor. Given that the exact number of trials and hence the time-

samples of trial-concatenated data were not similar movement to movement, we periodically subsampled trials when running the

TME code to ensure that the 3D tensor was consistent. We then used CCA to align the simulated neural data to the synergy activa-

tions and thereby identified the null distribution of principal angles between the simulated CCA aligned neural manifolds. If two

alignedmanifolds were not similar to each other, then their principal angles would not be distinct from the null distribution of principal

angles, assessed at the a= 0:01 level. We carried the above analyses to understand the distinctiveness of the aligned submanifold

analyses for both LFOs and gLFO
H in the grasp network.

Compartmentalization of behaviorally relevant neural dynamics by the submanifolds
To understand whether the kinematically relevant neural dynamics were compartmentalized by the submanifolds for different move-

ments, we projected data from one movement onto the submanifold of another movement as follows. Let X
ð1Þ
a and X

ð1Þ
b be the neural

and synergy activation data for movement 1, and X
ð2Þ
a and X

ð2Þ
b be the neural and synergy activation data for movement 2. The cor-

respondingCCA neural and kinematicmodes for bothmovements arew
ð1Þ
a ; w

ð1Þ
b andw

ð2Þ
a ; w

ð2Þ
b respectively. By swappingCCA neural

modes, we generate new low-dimensional neural trajectories z
ð1Þswap
a =X

ð1Þ
a w

ð2Þ
a while the preserved neural trajectories remain to be

z
ð1Þ
a = X

ð1Þ
a w

ð1Þ
a . As the objective function of CCA is to align low-dimensional neural dynamics with synergy admixtures, we evaluated

the result of swapping CCA neural modes on kinematic correlation Czð1Þswap
a ; z

ð1Þ
b D; where z

ð1Þ
b = X

ð1Þ
b w

ð1Þ
b . We performed such pairwise

mode swapping between all movements and within each subject. We compared the kinematic correlation for swapped and pre-

served modes to evaluate the generalizability of the CCA neural modes. To ensure the robustness of our results, we also projected

data onto the column space of the submanifold rather than just swapping CCA neural modes. In this scenario, z
ð1Þswap
a =

X
ð1Þ
a w

ð2Þ
a ðwð2Þ

a

u
w

ð2Þ
a Þ

�1

w
ð2Þ
a

u
w

ð1Þ
a , explicitly testing how the range of the two manifolds are related to each other.

Multiplexing of synergies
In our CCA formulation, there are some interesting properties of the CCA kinematic mode or kinematic mixing matrix wb. First, note

that if the synergy data are z-scored in the CCAmodel (making the variance of all synergies to be equal to one), then the covariance of

Xb is essentially the identity matrix I ˛Rk3k as the synergies by definition are orthogonal to each other as a consequence of the PCA

step. Given that the columns of zb are also orthogonal to each other, this leads to the kinematic mixing matrix wb to be a square

orthogonal rotation matrix of dimension Rk3k . To see this, substitute zb =Xbwb in the CCA constraint zub zb = I; leading to

wu
b Xu

b Xbwb = I;
resulting in wu
b wb = I

Moreover, the coefficients ofwb ðwbðl;mÞ in the lth row andmth column) are nothing but the pairwise correlations between the synergy

activations Xl
b and CCA kinematic trajectories zmb, cl;m = 1;2;.k. More specifically,

Xu
b zb = Xu

b Xbwb =wb

Hence the coefficients of each column ofwb correspond to the admixture of synergies that generates a single CCA kinematic trajec-

tory. Therefore, themore thatwb resembles the identity matrix, the lesser the admixture of synergies, as each CCA trajectory is better

correlated to the activation of an individual synergy. Alternatively, higher off-diagonal magnitudes indicate that a CCA trajectory is

correlated to the activations of multiple synergies. We can thus evaluate the squared correlation terms in the diagonal and off-diag-

onal elements of wb to understand how the admixture of each movement’s synergies is cortically encoded by LFOs.

Spatial map of the CCA neural modes
As we had aligned latent neural dynamics to synergies, the CCA neural modes correspond to a linear combination of the axes of the

manifold i.e., Xawa in the input side of the CCA model can be rewritten as DaPCawa wherein Da is the original data matrix in high

dimensional channel space, PCa are the PCs of Da that defined the 45D neural manifold and wa are the CCA neural modes. We

had earlier shown the PCs to span a commonmulti-areal neural subspace; the submanifolds defined by linear combinations of these

PCs will thus also span the same distributed network. Could such a distributed network persist if we were to align high-dimensional

neural data directly to synergies without the intermediate step of projecting onto the neural manifold? Such a finding would suggest
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that the alignedmanifold that covaries with kinematic synergies spans a common distributed network. To this end, we re-ran the CCA

analyses where high-dimensional channel data were directly mapped to k most significant synergies. To identify the cortical network

of channels associated with each kinematically aligned manifold, we focused on the channel weight within each CCA neural mode

and sought to identify the most significant channels within each CCA neural mode based on the weight magnitude.

To verify that the weights assigned to the LFO channels in the CCA neural modes are meaningful, we measured the drop in cross-

validated CCA r2i values between each neural and kinematic trajectory when either the channels with the smallest weights were drop-

ped first (ascending order of weight magnitude) or when channels with the largest weights were dropped first (descending order of

weight magnitude). To assess the weight of a LFO channel in the neural mode of a given hand movement, and considering the fact

that both the neural and synergy datasets consist of quasi-periodic oscillations, wemodeled each channel’s LFO oscillation (0.5-4Hz

filtered activity) as an pth order auto-regressive (AR) process (Hayes, 1996), given by

LFOch
t = b0 +

Xp
i =1

biLFO
ch
t�i + εt

Here, each channel’s LFO time-course is modeled as the output of filtering zero-mean unit variance Gaussian white-noise εt˛Nð0;1Þ
through an all-pole filter. The b terms are the coefficients of the AR process and given that data were mean-centered, the b0 termwas

zero. We estimated the coefficients of the AR process using the forward-backward least-squares approach. To determine the appro-

priatemodel order, we computed the Bayesian Information Criterion (BIC) for model orders ranging from 1 to 100 and chose the order

that gave the lowest BIC.Wewere then able to simulate LFOs at any given channel, for any handmovement and participant by simply

filtering generated white noise through the AR filter. A run-off time was included to overcome the lag effect from the model order. In

this manner, we were able to simulate artificial, randomly generated LFOs and their envelopes that had the same spectral and energy

characteristics as measured LFOs. By using CCA to align simulated LFO data to synergy activations, a null distribution of weight

magnitudes were generated. The significance of channel weights within each CCA neural mode j = 1;2. k was measured by

comparing the weight magnitude in wj
a to the null distribution of weight magnitudes from 2000 AR simulations. The FDR procedure

was used for multiple comparison correction given that a statistical test was performed at each channel. Significant channels from

each neural mode were pooled together to create a final binary mask of significant channels over the ECoG grid. This procedure was

carried for each participant and movement to identify each aligned manifold’s cortical network of channels.

The mask of significant channels from each participant and movement was projected onto the cortical surface using 3D Gaussian

functions centered around each electrode, with a spreading parameter of 1cm (Hamilton et al., 2017), resulting in LFO cortical chan-

nel density maps. The cosine distance metric was used measure the similarity between movements’ pairwise cortical density maps,

resulting in a similarity matrix per participant. The similarity matrices were then averaged, and hierarchical clustering was performed

on the average similarity matrix using Ward’s criterion. If there was a true similarity between movements’ cortical density maps i.e., a

significant cluster, then the lowest level that any two movements merge would be much smaller than the final aggregate cluster dis-

tance. We evaluated this hypothesis by comparing the ratio of the highest to lowest cluster distance to a null distribution of similar

ratios obtained by shuffling movement labels within each participant for 1000 iterations prior to averaging and clustering. We also

defined rough Brodmann Area-based regions of interest (ROI) identifying primary motor cortex (M1), sensory cortex (S1), ventral

and dorsal premotor cortices (PMv, PMd), parietal cortex (PPC) and supramarginal gyrus (SMG) and quantified the proportion of sig-

nificant channels within each ROI. Each participant’s MRI was also warped to the MNI average template brain (Hamilton et al., 2017);

this aided in projecting significant individual participant electrodes onto the average brain template as a density map by convolving

each significant electrode with a 3D Gaussian function (spreading parameter of 1cm). The MRI of right hemispheric patients was

mirrored so that the left hemisphere was always the common hemisphere.

QUANTIFICATION AND STATISTICAL ANALYSIS

Wherever appropriate, we employed parametric tests of difference of means using mixed effect models and non-parametric tests of

significance using permutation tests. Confidence intervals were computed using the bootstrapping procedure. All the statistical tests

utilized in this study are detailed in the text of the Results section in themain paper and expanded upon in the STAR ‘methods details’

section for each type of analysis. Central measures (mean or median) as well measures of data spread (S.D., C.I.) are reported in the

Results section and Method details for the relevant analysis and figures. Non-parametric tests of significance make no assumptions

on the distribution of data; for parametric models, we did not perform tests to evaluate whether the data fit the assumptions of the

statistical model. However, we confirmed the findings of parametric statistical models via equivalent permutation or shuffling tests.

All statistical analyses were performed in MATLAB (Mathworks Inc.).
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