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a b s t r a c t 

Direct neural recordings from human auditory cortex have demonstrated encoding for acoustic-phonetic 

features of consonants and vowels. Neural responses also encode distinct acoustic amplitude cues related 

to timing, such as those that occur at the onset of a sentence after a silent period or the onset of the 

vowel in each syllable. Here, we used a group reduced rank regression model to show that distributed 

cortical responses support a low-dimensional latent state representation of temporal context in speech. 

The timing cues each capture more unique variance than all other phonetic features and exhibit rotational 

or cyclical dynamics in latent space from activity that is widespread over the superior temporal gyrus. 

We propose that these spatially distributed timing signals could serve to provide temporal context for, 

and possibly bind across time, the concurrent processing of individual phonetic features, to compose 

higher-order phonological (e.g. word-level) representations. 

© 2023 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Natural speech is a continuous stream of complex acous- 

ic features, and listeners build representations of auditory ob- 

ects at multiple levels, from phonemes, to syllables, words, and 

hrases ( Berwick et al., 2013 ; Chomsky, 1985 ). The cortical ba- 

is of these dynamic compositional operations is an active area 

f research. There is evidence that the superior temporal gyrus 

STG) performs speech-specific extraction of acoustic-phonetic fea- 

ures ( Mesgarani et al., 2014 ), but where and how these segmen- 

al features are composed into longer units like words is less un- 

erstood. Since the cascade of neural activity evoked by a given 

coustic-phonetic feature can last longer than the feature itself 

 Gwilliams et al., 2020 ; Khalighinejad et al., 2017 ; Mesgarani et al.,

014 ; Näätänen and Picton, 1987 ; Norman-Haignere et al., 2020 ), 

here is potential for overlap in the neural representations over 

ime. Hence the neural computations underlying speech compre- 

ension should have a way to keep track of the temporal con- 

ext of the individual phonetic units in order to compose them 

nto a higher order unit such as a word ( Fischer-Baum, 2018 ; 

williams et al., 2020 ). 

We hypothesized that the mechanisms underlying temporal 

ontext tracking and composition in auditory cortex would be re- 
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ected in low-dimensional latent dynamics of electrocorticography 

ECoG)-scale neural recordings. As neural recordings have grown in 

imension, latent state models have become more popular as the 

xplanatory framework for understanding neural computation. We 

se the terms “latent state” and “latent dynamics” to refer to low- 

imensional approximations of high-dimensional neural recordings 

cross time (e.g. recordings across many neurons or many elec- 

rodes). For example, principal component analysis (PCA) can be 

sed to reduce a 256-dimensional timeseries of ECoG recordings 

nto a 3-dimensional timeseries (the top 3 principal components) 

hat capture as much variance as possible. PCA is one of many 

echniques that can be used to capture a high-dimensional signal 

n low-dimensional terms. In general, if a low-dimensional repre- 

entation captures important properties of the high-dimensional 

ignal, those properties can often be better described and visual- 

zed in low dimensions, for example by plotting a 3-dimensional 

imeseries as a trajectory in a 3-dimensional plot. 

Going further than just plotting latent dynamics, there is a 

rowing trend to use the geometric characteristics of latent states 

i.e. the shapes formed by the low-dimensional trajectories) to 

ain insight into the computational roles that are being played 

y the network ( Russo et al., 2020 , 2018 ; Seely et al., 2016 ;

yas et al., 2020 ). One such geometrical motif is rotational dy- 

amics ( Churchland et al., 2012 ), which happen when the latent 

ynamics form circles or closed loops. Rotational dynamics may 

lay a computational role in coordinating movements over time 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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n the motor system ( Buonomano and Laje, 2010 ; Cannon and Pa- 

el, 2021 ; Russo et al., 2020 , 2018 ) (see Section 5 ). While the neural

ctivity underlying speech perception is likely to be very different 

rom that underlying motor sequencing, low-dimensional dynam- 

cs across the speech-responsive network in STG could reflect sim- 

lar computational strategies to coordinate temporal context during 

peech perception. 

There is already reason to believe that STG encodes informa- 

ion about timing: some STG populations respond to amplitude 

nset events found at the beginning of a sentence after a silent 

eriod, or the acoustic edges that occur at the onset of vowels 

n syllables (called ‘peak rate’ events because they are defined by 

eaks in the first derivative of the speech envelope timeseries) 

 Hamilton et al., 2018 ; Oganian and Chang, 2019 ). If these signals

re strong (representing a large proportion of the variance), tempo- 

ally similar across different populations, and spatially widespread, 

hey could constitute a meaningful low-dimensional latent state. In 

act, Hamilton and colleagues ( Hamilton et al., 2018 ) were able to 

nd low-dimensional dynamics tied to sentence onsets using un- 

upervised linear dimensionality reduction. Unfortunately, due to 

he complex nature of the task (with a high-dimensional stimulus 

pace and relevant stimulus features occurring closely in time), un- 

upervised methods have trouble uncovering dynamics related to 

ther stimulus features, whose neural responses may overlap tem- 

orally and spatially with sentence onset responses. This makes it 

ifficult to describe latent dynamics related to peak rate events, 

hich are more closely aligned in timescale to the low-level com- 

ositional operations that we seek to describe. Supervised models, 

n the other hand, have historically focused on individual elec- 

rodes and as a result fail to describe latent dynamics that may 

eflect computational principles on a larger spatial scale. 

Here we use a multivariate supervised approach to model the 

ctivity across all speech-responsive STG electrodes. Using inte- 

rative reduced rank regression (iRRR) ( Li et al., 2019 ), we esti- 

ate latent states by reducing the high-dimensional ECoG time- 

eries into a set of low-dimensional responses to specific stimulus 

eatures. In other words, we simultaneously estimate a separate 

ow-dimensional latent state for each stimulus feature, including 

entence onsets, peak rate events, and acoustic-phonetic features 

ased on the place and manner of articulation. We find that iRRR 

utperforms models that treat each electrode individually, indicat- 

ng that substantial feature-related information is shared across 

lectrodes. The sentence onset and peak rate features explain more 

f the variance than phonetic features, reaffirming the importance 

f these timing-related features for encoding in STG. Furthermore, 

he latent states for the onset and peak rate features are low- 

imensional (5 and 6 dimensional, respectively) and distributed 

ver centimeters of cortex, indicating a widespread signal that 

ould be available to coordinate local and downstream processing. 

eometrically, the latent dynamics contain a large proportion of 

otational dynamics. Projections of the neural responses onto these 

ow-dimensional spaces can be used to decode the time relative to 

he most recent sentence onset or peak rate event, with perfor- 

ance that is better than decoding from the full high-dimensional 

esponses across all electrodes. We propose that the sentence on- 

et response is an initialization signal and the peak rate latent 

tates encode the time relative to acoustic events at the sentence 

nd syllable scales. For peak rate, this spatially distributed timing 

ignal could be used in local and downstream processing when 

omposing word-level representations from low-level acoustic fea- 

ures. 

. Theory 

High gamma amplitudes in neural voltage recordings are 

nown to correlate with the firing rates ( Dubey and Ray, 2020 ; 
2 
anning et al., 2009 ; Ray et al., 2008 ; Ray and Maunsell, 2011 ;

cheffer-Teixeira et al., 2013 ) and dendritic processes ( Bédard et al., 

006 ; Leszczy ́nski et al., 2020 ; Miller et al., 2009 ; Suzuki and

arkum, 2017 ) of neurons near the electrode ( Buzsáki et al., 

012 ), and we use them here as a proxy for the level of pop-

lation activity under the ECoG electrodes. Successful previous 

odels of high gamma activity over STG have taken two differ- 

nt approaches: using univariate supervised regression to model 

ingle-electrode responses as a function of spectral or linguis- 

ic characteristics in the audio speech signal ( Aertsen and Jo- 

annesma, 1981 ; Holdgraf et al., 2017 ; Mesgarani et al., 2014 ; 

ganian and Chang, 2019 ; Theunissen et al., 2001 ), and using un- 

upervised dimensionality reduction to infer latent states from the 

ultivariate signals without reference to the characteristics of the 

udio stimulus ( Hamilton et al., 2018 ). 

.1. Classic univariate regression modeling 

The advantage of regression models is that they characterize 

he relationship between the neural responses and acoustic fea- 

ures in the speech signal. In classic univariate models, the high 

amma responses on individual electrodes are considered to be 

he result of a convolution of time-dependent receptive fields with 

orresponding time series of acoustic features. The classic spec- 

rotemporal receptive field (STRF) model (see Section 3.5 ), for ex- 

mple, uses a mel spectrogram of the stimulus as the acoustic 

eature representation, resulting in a framework where the neu- 

al receptive fields act as a linear filter on the speech spectro- 

ram ( Theunissen et al., 2001 ). Based on the observation that elec- 

rode activity over STG reflects information at the level of phonetic 

eatures rather than individual phonemes ( Mesgarani et al., 2014 ), 

ganian and Chang (2019) used an event-based feature representa- 

ion to capture these effects and to show that some electrodes ad- 

itionally have responses triggered by sentence onsets and sharp 

ransients in the acoustic envelope of the speech signal, called 

eak rate events. While these models have been instrumental in 

escribing the response patterns on individual electrodes, they fail 

o capture latent dynamics that are shared across multiple elec- 

rodes, which could uncover computational principles at work at a 

arger spatial scale. 

.2. Unsupervised dimensionality reduction modeling 

An alternative approach uses unsupervised dimensionality re- 

uction to investigate latent structure in neural responses to 

peech ( Hamilton et al., 2018 ). Using convex nonnegative matrix 

actorization, Hamilton and colleagues showed that electrodes can 

e naturally classified into two groups, “onset” electrodes that have 

 short increase in high gamma activity at the onset of a sen- 

ence, and “sustained” electrodes that show increased high gamma 

ctivity throughout the stimulus. This observation is also appar- 

nt using principal component analysis ( Section 3.12 and Supple- 

entary Figure S1), in which the first component has a char- 

cteristic sustained profile, and the second component has the 

nset profile. Note that the high gamma signals are not intrin- 

ically low-dimensional: 2 dimensions capture only 24% of the 

ariance in speech responsive electrodes (comparable to 16.9% of 

he variance in all electrodes captured in the first two clusters 

f ( Hamilton et al., 2018 )) and 189 dimensions are necessary to 

apture 80% of the variance. This could be related to the high- 

imensional nature of the task: in an unsupervised framework in 

hich the system responds to stimulus features, the response di- 

ensionality needs to be at least as high-dimensional as the task 

tself ( Gao et al., 2017 ; Stringer et al., 2019 ). Furthermore, both of

hese components are time-locked to sentence onset, and it is dif- 

cult to connect them or higher components to other speech fea- 
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ures, possibly because the dynamics related to other features are 

ot orthogonal to the sentence-onset subspace or to each other. 

n particular, the dependence of the neural responses on the peak 

ate events is not apparent from this analysis, and a model that 

ould capture latent dynamics related to peak rate would be valu- 

ble for describing population encoding of shorter timescales. 

.3. Our approach: integrative reduced rank regression 

Here we apply a model that combines the advantages of the 

egression and dimensionality reduction approaches, using multi- 

ariate integrative reduced rank regression (iRRR) ( Li et al., 2019 ) 

o estimate the latent dynamics attributed to each speech feature 

eparately (sentence onsets, peak rate events, and phonetic fea- 

ure events coded by their place and manner of articulation). This 

roup-reduced-rank model partitions the expected neural activity 

nto a separate latent state for each feature, choosing the best la- 

ent dimensionality for each feature while penalizing the total di- 

ensionality across all features. The resulting estimates of feature- 

pecific latent states have explanatory power that goes beyond 

oth individual electrode models and unsupervised dimensionality 

eduction models. 

. Methods 

.1. Participants 

Participants included 11 patients (6M/5F; aged 16–60 years old, 

edian 29) undergoing treatment for intractable epilepsy. As a 

art of their clinical evaluation for epilepsy surgery, high-density 

ntracranial electrode grids (AdTech 256 channels, 4 mm center-to- 

enter spacing and 1.17 mm diameter) were implanted subdurally 

ver the left peri–Sylvian cortex. All subjects were left-language- 

ominant (see Table S1 for more clinical and demographic details). 

ll procedures were approved by the University of California, San 

rancisco Institutional Review Board, and all patients provided in- 

ormed written consent to participate. Data used in this study was 

reviously reported in ( Hamilton et al., 2018 ). 

.2. Experimental stimuli 

Stimuli consisted of 499 English sentences from the TIMIT 

coustic-phonetic corpus ( Garofolo et al., 1993 ), spoken by male 

nd female speakers with a variety of North American accents. 

timuli were presented through free-field Logitech speakers at 

omfortable ambient loudness ( ∼70 dB), controlled by a custom 

ATLAB script. Participants passively listened to the sentences in 

 blocks, each lasting about 4 min. A subset of 438 sentences were 

elected for analysis that were heard once by all 11 subjects. The 

entences had durations between 0.9 and 2.6 s, with a 400 ms in- 

ertrial interval. 

.3. Neural recordings and electrode localization 

Neural recordings were acquired at a sampling rate of 3051.8 Hz 

sing a 256-channel PZ2 amplifier or 512-channel PZ5 amplifier 

onnected to an RZ2 digital acquisition system (Tucker-Davis Tech- 

ologies, Alachua, FL, USA). 

Electrodes were localized by coregistering a preoperative T1 

RI scan of the individual subject’s brain with a postoperative CT 

can of the electrodes in place. Freesurfer was used to create a 3d 

odel of the individual subjects’ pial surfaces, run automatic par- 

ellation to get individual anatomical labels, and warp the individ- 

al subject surfaces into the cvs_avg35_inMNI152 average template 

 Desikan et al., 2006 ; Fischl et al., 2004 ). More detailed procedures

re described in ( Hamilton et al., 2017 ). 
3 
.4. Preprocessing 

For each electrode, the high gamma amplitude time series 

ere extracted from the broadband neural recordings as follows 

 Edwards et al., 2009 ; Hamilton et al., 2018 ; Moses et al., 2016 ;

ganian and Chang, 2019 ). First, the signals were downsampled to 

00 Hz, rereferenced to the common average in blocks of 16 chan- 

els (blocks shared the same connector to the preamplifier), and 

otch filtered at 60, 120, and 180 Hz to remove line noise and its 

armonics. These LFP signals were then filtered using a bank of 8 

aussian filters with center frequencies logarithmically spaced be- 

ween 70 and 150 Hz (see Table S2). Using the Hilbert transform, 

he amplitude of the analytic signal was computed for each of 

hese frequency bands, and for each electrode the high gamma am- 

litude was defined as the first principal component across these 

 frequency bands. Finally, the high gamma amplitude was further 

ownsampled to 100 Hz and z-scored based on the mean and stan- 

ard deviation across each experimental block. 

.5. Electrode selection 

In order to select speech-responsive electrodes over STG, elec- 

rodes were included (1) if they were located over the STG, as 

dentified in the Freesurfer anatomical parcellation of the individ- 

al subject cortical surface, and (2) if their high gamma activity 

as predicted by a linear spectrotemporal model with r 2 above 5% 

 Hamilton et al., 2018 ). Note that several electrodes appear to be 

ocated away from STG in the cvs_avg35_inMNI152 average tem- 

late (e.g. Fig. 1 a) – this is an artifact of the warping to the average

rain. 

For this single electrode analysis, the model had the form of a 

pectrotemporal receptive field (STRF): 

 ( t ) = 

∑ 

f 

∑ 

τ

S 
(

f, t − τ
)
β
(
τ, f 

)
+ e ( t ) (1) 

here y is the high gamma amplitude on a single electrode across 

ime t , S is the mel spectrogram of the speech audio signal, β are 

nknown regression coefficients, and e is the zero-mean Gaussian 

rror term. The frequencies f take on values between 75 Hz and 

 kHz, and delays τ take on values between 0 and 500 ms. By 

tting regression coefficients across frequencies and delays, the re- 

ponse on the electrode at a given time is modeled as a function 

f the recent history of the stimulus spectrogram (up to 500 ms 

n the past). Ridge regression was used to fit the models (see 

ection 3.7 for details of the ridge regression framework): the data 

ere split into 80% training and 20% testing data sets, the train- 

ng data was used to choose the α parameter according to a 5- 

old cross-validation, the full training data was fit using the cho- 

en α parameter, and the r 2 was assessed on the testing data (see 

ection 3.8 for computation of r 2 ). Electrodes with r 2 > 0.05 were 

ncluded in subsequent analyses. The selected electrodes and their 

orresponding r 2 values are shown in Fig. 1 A ( N = 331 ). 

.6. Regression model setup 

The model uses a multivariate adaptation of the event-based re- 

ression framework of Oganian and Chang (2019) . In matrix form, 

he model has the following structure: 

 = 

F ∑ 

f=1 

X f B f + E (2) 

Where: 

• Y is the T × N matrix of z-scored high gamma amplitude val- 

ues across electrodes and timepoints. The time dimension rep- 

resents a concatenation of all 438 sentence stimuli that were 
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Fig. 1. iRRR outperforms models that treat each electrode individually, and sentence onset and peak rate capture more of the variance than phonetic features. A: Electrodes 

used for model fitting, colored according to the testing r 2 of the linear spectrotemporal (STRF) model (electrodes were selected for subsequent analysis if they were located 

over STG and if their testing r 2 for the spectrotemporal model was greater than 0.05). B: Features used for feature temporal receptive field modeling. Top: the acoustic 

waveform of an example sentence. The solid vertical line shows the sentence onset event, and the dashed vertical lines show the times of the peak rate events. Second 

panel: the corresponding mel-band spectrogram. Third panel: the envelope of the acoustic waveform (black) and the positive rate of change of the envelope (red). The peaks 

in the positive envelope rate of change are the peak rate events. Bottom: the feature time series. White space represents no event (encoded by 0 in the feature matrix), black 

lines represent event times (encoded by 1), and red lines indicate peak rate event times with their corresponding magnitude indicated to the right. C, D, E: Performance of 

the iRRR model in comparison to ordinary least squares (OLS) and ridge regression (Ridge). 95% confidence intervals were estimated using the standard error of the mean 

across cross-validation folds (see Section 3.8 ). Significance was assessed for comparisons using two-sided paired t-tests across cross-validation folds, ∗∗∗ p < 0.0 0 05. C: Total 

explained variance, computed as the testing r 2 computed over all speech-responsive electrodes. D: Group nuclear norm, meaning the penalty term from the iRRR model 

(see Eq. (11) ). E: The effective number of parameters for the fitted models. F: Unique explained variance for each feature (over all speech-responsive electrodes), expressed 

as a percentage of the variance captured by the full model. Comparing individual features, both timing features have significantly more unique explained variance than all 

phonetic features, after Bonferroni correction over pairs (left). Also shown is the unique explained variance for the combined timing features (sentence onset and peak rate) 

and the combined phonetic features (right). When the features are grouped, the phonetic features capture more unique explained variance than the timing features. 

fi  

t

e

S

c

(

heard by every subject, from 500 ms before sentence onset un- 

til 500 ms after sentence offset (132,402 timepoints, later split 

for cross validation, see Section 3.7 ). The electrode dimension 

includes speech-responsive electrodes from all subjects (331 

electrodes). 
• Each X f ( T × D ) represents the delayed feature events for fea- 

ture f . The first column contains the feature events across time 

(1 representing an event occuring, 0 otherwise. For peak rate, 

events were coded by a real-valued magnitude, see Fig. 1 B). Fol- 

lowing columns contain the same time series, offset by time- 

delays between 10 ms and 750 ms (76 delays). There were 12 

features: sentence onset, peak rate, dorsal, coronal, labial, high, 

front, low, back, plosive, fricative, and nasal (described below). 
• E ( T × N) is Gaussian noise, assumed to be uncorrelated across 

electrodes 
t

4 
• B f ( D × N) are the coefficient matrices, i.e. the multivariate tem- 

poral response functions (MTRFs), representing the responses of 

each electrode to the given feature across electrodes and delays 
• T : number of timepoints; N: number of electrodes, D : number 

of delays, F : number of features. 

Electrodes from all subjects were included in the same model 

t, in keeping with the analysis in ( Hamilton et al., 2018 ), in order

o maximize statistical power and spatial coverage of STG. How- 

ver, the model performance is similar for single subjects (See 

ection 3.13 and Supplementary Figure S2). 

The features used to represent the stimulus were chosen to 

apture both the phonetic contents of speech, as summarized in 

 Mesgarani et al., 2014 ), as well as the speech-envelope landmarks 

hat have been shown to predict neural responses: sentence on- 
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ets ( Hamilton et al., 2018 ) and peak rate events ( Oganian and

hang, 2019 ). Sentence onset was defined as the sound onset time 

or the sentence stimulus. Peak rate was extracted by taking the 

erivative of the analytic envelope of the speech signal: the peak 

ate event times were the times when the derivative reached a 

aximum, and the peak rate magnitude was the value of the 

erivative at that time point ( Oganian and Chang, 2019 ). Phonetic 

eature event times (dorsal, coronal, labial, high, front, low, back, 

losive, fricative, nasal) were extracted from time-aligned phonetic 

ranscriptions of the TIMIT corpus, which were timed to the onset 

f the respective phonemes in the speech signal ( Garofolo et al., 

993 ). 

Fig. 1 B shows the feature events for an example sentence stim- 

lus, “They’ve never met, you know”. The top two panels show 

he stimulus waveform and mel spectrogram, respectively, with the 

imes of sentence onset and peak rate events indicated with verti- 

al lines (solid and dashed, respectively). The features fall into two 

ategories: timing (sentence onset and peak rate) and acoustic- 

honetic (dorsal, coronal, labial, high, low, front, back, plosive, 

ricative, nasal). With the exception of peak rate, all of the feature 

vents were encoded as binary time series with a 1 representing 

n event occurring, and 0 otherwise. For peak rate, the time series 

ontained continuous values representing the slope of the acoustic 

mplitude signal at the time of maximal change, and 0 at all other 

imes (in Fig. 1 B, red lines indicate peak rate event times and red

umbers indicate the peak rate magnitude). We chose to include 

agnitude for peak rate events, because it is known to correlate 

ery well with stressed syllables, i.e. syllables with higher stress 

ill have higher peak rate magnitude. 

.7. Model fitting 

We fit the model using ordinary least squares (OLS), ridge re- 

ression, and integrative reduced-rank regression (iRRR) ( Li et al., 

019 ). The way we use OLS and ridge regression here is equivalent 

o traditional univariate modeling, and we include them for com- 

arison to the multivariate iRRR approach. The difference between 

he three is the objective function that is minimized to choose the 

tted coefficient matrices: 

 

ˆ B f, OLS 

} F 

f=1 
= argmin 

B f ∈ R D ×N 

1 

2 T 

∥∥∥∥∥Y −
F ∑ 

f=1 

X f B f 

∥∥∥∥∥
2 

F 

(3) 

 

ˆ B f, ridge 

} F 

f=1 
= argmin 

B f ∈ R D ×N 

1 

2 T 

∣∣∣∣∣
∣∣∣∣∣Y −

F ∑ 

f=1 

X f B f 

∣∣∣∣∣
∣∣∣∣∣

2 

F 

+ α
F ∑ 

f=1 

∣∣∣∣B f 

∣∣∣∣2 

F (4) 

 

ˆ B f, iRRR 

} F 

f=1 
= argmin 

B f ∈ R D ×N 

1 

2 T 

∣∣∣∣∣
∣∣∣∣∣Y −

F ∑ 

f=1 

X f B f 

∣∣∣∣∣
∣∣∣∣∣

2 

F 

+ λ
F ∑ 

f=1 

w f 

∣∣∣∣B f 

∣∣∣∣
∗ (5) 

here || · || F represents the Frobenius (L2) norm, || · || ∗ represents 

he nuclear norm (i.e. the sum of the singular values of the brack- 

ted matrix), the w f s are weights chosen as described below, and 

and λ are regularization parameters that are chosen as described 

elow. 

The weights used for the iRRR model were chosen to balance 

he different features ( Li et al., 2019 ): 

 f = σ
(
X f , 1 

){√ 

N + 

√ 

r 
(
X f 

)}
/T (6) 

here σ ( X f , 1 ) is the first singular value of the matrix X f and 

( X f ) = D is the rank of matrix X f . Note that the cost functions

qs. (3) –( (5) ) treat the noise variance for all electrodes equally –

ecause the high gamma signal on each electrode was z-scored in 
5 
reprocessing, we assume that the noise variance is the same for 

ll electrodes. In addition, all predictors X f and responses Y were 

olumn-centered before fitting the models. 

In iRRR, the nuclear norm penalty acts as an L1 penalty on 

he singular values of each feature matrix B f , so the regression 

ends to find solutions where the feature matrices are low-rank 

i.e. sparse in the singular values). Because many of the singular 

alues will be zero, the fitted feature matrices can be represented 

sing a low-dimensional singular value decomposition: 

ˆ 
 f = U f S f V 

T 
f (7) 

here U f is D × k , S f is k × k , and V T 
f 

is k × N, for some k < N.

n other words, the full multivariate feature receptive fields can be 

epresented with a small number of patterns across time (columns 

f U f ), patterns across electrodes (rows of V T 
f 

), and corresponding 

eights (values on the diagonal of S f ). The number of dimensions 

 can be different for each feature, and it comes from balancing the 

ontribution of the feature to the first term of Eq. (5) (the mean 

quared error) with the contribution of the feature to the second 

erm (the nuclear norm penalty), relative to other features. Increas- 

ng the tuning parameter λ will tend to decrease the total number 

f dimensions used across all features. 

Note that the approach of using a regression framework to fit a 

roup-reduced rank model of neural activity has been used before 

 Aoi et al., 2020 ; Aoi and Pillow, 2018 ): the iRRR framework differs

n that it uses an L1 relaxation, resulting in a convex optimization 

ormulation that can be fit efficiently using alternating direction 

ethod of multipliers. 

In order to compute confidence intervals for model perfor- 

ance metrics ( Section 3.8 ), models were fit using 10-fold cross 

alidation, using group cross validation to keep time points cor- 

esponding to the same sentence stimulus in the same fold. For 

idge regression and iRRR, an additional nested 5-fold cross vali- 

ation was used to choose the α and λ parameters within each 

old of the outer cross-validation. For ridge regression, a separate 

parameter was chosen for each electrode (consistent with the 

tandard approach for univariate models), while iRRR used a single 

parameter for the full multivariate fit. 

.8. Model performance metrics 

Total explained variance ( Fig. 1 C) was calculated as: 

 

2 = 1 − SS res 

SS tot 
(8) 

here the SS res is the residual sum of squares computed on the 

esting dataset: 

S res = 

∥∥∥∥∥Y −
F ∑ 

f=1 

X f B f 

∥∥∥∥∥
2 

F 

(9) 

nd SS tot is the total sum of squares computed on the testing 

ataset: 

S tot = || Y || 2 F (10) 

The group nuclear norm ( Fig. 1 D) was computed as the penalty 

erm in the iRRR model: 

F 
 

f=1 

w f || B f || ∗ (11) 

Because OLS and ridge regression yield full-rank coefficient ma- 

rices, the number of parameters ( Fig. 1 E) used for both is DN. For

RRR, the number of parameters is k ( D + N + 1 ) , based on the sin-

ular value decomposition described in Eq. (6) . 

Unique explained variance for each feature ( Fig. 1 F) was com- 

uted by fitting a reduced iRRR model without the feature f , and 
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hen comparing the total explained variance of the full model r 2 
F ull 

o the total explained variance of the reduced model r 2 − f 
. The re- 

uced iRRR model was fit using the same λ value as the full model, 

hosen using nested cross validation on the full model as described 

bove. For the “all timing” category, the reduced model was fit 

ithout sentence onset and peak rate, and for the “all phonetic”

ategory, the reduced model was fit without the phonetic features. 

he unique explained variance was expressed as a percentage of 

he full model: 

00 ×
r 2 

F ull 
− r 2 − f 

r 2 
F ull 

(12) 

All metrics are reported in terms of the mean across the 10 

olds of the cross validation, and 95% confidence intervals are 

t 9 , 0 . 975 s/ 
√ 

10 , where s is the sample standard deviation across the 

0 cross validation folds. Note that these confidence intervals do 

ot account for the dependence between cross-validation folds due 

o reuse of samples in training and testing sets, and may there- 

ore be smaller than the true intervals ( Austern and Zhou, 2020 ; 

ates et al., 2023 ; Bengio and Grandvalet, 2004 ). 

Significant differences between conditions were assessed 

sing paired two-tailed t-tests across cross-validation folds 

 Dietterich, 1998 ) for the following comparisons (with the result- 

ng p-value ranges): 

1. Total explained variance for OLS vs Ridge ( p > 0.05), OLS vs iRRR 

( p < 0.0 0 05), and Ridge vs iRRR ( p < 0.0 0 05). 

2. Unique explained variance of sentence onset vs each acoustic- 

phonetic feature and peak rate vs each acoustic-phonetic fea- 

ture. Here the p-values were Bonferroni corrected across the 

(2 timing features times 10 acoustic-phonetic features) 20 com- 

parisons. After correction, all comparisons were significant with 

p < 0.0 0 05. 

3. Unique explained variance of the combined timing features vs 

the combined acoustic-phonetic features ( p < 0.0 0 05). 

Similar to the confidence intervals described above, the signif- 

cance tests did not account for the dependence between cross- 

alidation folds and may therefore have an inflated type II error 

 Austern and Zhou, 2020 ; Bates et al., 2023 ; Bengio and Grand-

alet, 2004 ). 

.9. Computing predicted responses 

Given a model fitted with iRRR, the predicted latent response 

o a stimulus matrix X f is given by: 

ˆ 
 f ;latent = X f U f S f (13) 

Where X f ( T × D ) represents the delayed feature events for fea- 

ure f , U f is the D × k time components for feature f , and S f is a

iagonal matrix containing the weights for each component ( k ×
 ). ˆ Y f ;latent is a T × k matrix representing the predicted response 

ithin the k -dimensional latent space of the feature. Fig. 3 shows 

he predicted sentence onset and peak rate responses to the sen- 

ence “They’ve never met, you know”. 

.10. jPCA 

The plane of fastest rotation for the sentence onset and 

eak rate latent states ( Fig. 3 C) was identified by applying jPCA 

 Churchland et al., 2012 ) to the feature coefficient matrices ˆ B f . Us- 

ng jPCA, we modeled the temporal receptive fields in the coeffi- 

ient matrix as a linear dynamical system evolving over delays: 

d ̂  B f ( t ) = M ̂

 B f ( t ) (14) 

dt 

6 
here t indexes the delay dimension of ˆ B f , so the dynamical sys- 

em describes the evolution of an N-dimensional dynamical sys- 

em over D timepoints. By approximating the derivative on the left 

and side using first differences, the transition matrix M can be 

t using regression. Furthermore, the purely rotational component 

f the transition matrix can be isolated by constraining the matrix 

to be skew-symmetric, having purely imaginary eigenvalues that 

ome in complex conjugate pairs. The pair of eigenvectors with the 

argest magnitude eigenvalues describes the plane with the fastest 

otations. 

It is important to note that jPCA identifies planes with fast rota- 

ional dynamics, regardless of whether they capture a large propor- 

ion of the variance of the dynamics in the original dynamical sys- 

em. Classic jPCA uses PCA in preprocessing in order to confine the 

nalysis to six dimensions of largest variance. Here, the iRRR model 

hooses k dimensions for each feature that are most valuable to 

he overall fit of the model. Hence there was no need to perform 

dditional PCA to reduce the dimensionality. However, because the 

oefficient matrices had dimensions capturing very little variance, 

e did subselect components to capture 98% of the variance of the 

oefficient matrices. For both sentence onset and peak rate, this 

orresponded to the top 3 components. Hence the jPCA plane rep- 

esents the plane of maximal rotation within a 3-dimensional sub- 

pace capturing 98% of the variance in the 5-dimensional (or 6- 

imensional) coefficient matrix for sentence onset (or peak rate). If 

e had used more components for the jPCA computation, the rota- 

ional dynamics would be stronger but they would capture much 

ess of the variance (using k dimensions vs using 3 dimensions: 

.8% vs 31.8% for sentence onset and 4.8% vs 20.3% peak rate), mak- 

ng them less informative about the overall population dynamics. 

Once the jPCs were computed using the coefficient matrices, 

he predicted trajectory for a given stimulus ( Fig. 3 F and G) is cal-

ulated as: 

ˆ 
 f ; jPCA = X f J f (15) 

 f = [ E 1 + E 2 , j ( E 1 − E 2 ) ] 

here E 1 and E 2 are the eigenvectors with largest eigenvalues of 

he skew-symmetric matrix M defined above. J f is therefore the 

 × 2 projection matrix from electrode space onto the plane of 

ighest rotation from jPCA. 

.11. Event latency decoding 

For the decoding analysis ( Fig. 4 ), a perceptron model was 

rained to predict the time relative to the most recent feature 

vent (up to 750 ms). The model was designed using the MLPRe- 

ressor class of the sklearn package, with one hidden layer with 20 

idden units using a logistic activation function. We used a simple 

erceptron model in order to account for possible nonlinearities in 

he mapping from electrode space / feature latent space to relative 

imes. 

Using the same cross-validation framework that was used for 

RRR model fitting, the perceptron model was trained using the 

raining data (high gamma amplitudes) either across all electrodes 

 or using the projected data onto the latent state subspace: 

˜ 
 f,proj = Y V f (16) 

here V f is the N × k matrix of electrode components for feature 

f , as above. The T × k matrix ˜ Y f,proj is an approximation of the la- 

ent state across time, but it may be contaminated by activity from 

ther features because the V f matrices do not describe orthogonal 

ubspaces. It also contains activity from noise. 

Performance of the models was assessed using r 2 ( Eq. (8) ) on 

he held-out testing data for the cross-validation fold. The 95% con- 
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dence intervals were computed using the t distribution as de- 

cribed above, and the performance of the models trained on all 

lectrodes was compared to the performance of the models trained 

n the latent projections using a two-sided paired t-test, as de- 

cribed above ( Section 3.8 ), Bonferroni corrected across the 12 fea- 

ures. 

.12. Principal component analysis 

For Supplementary Figure S1, a standard principal component 

nalysis (PCA) was run using the same data matrix as used above 

 Y , the T × N matrix of z-scored high gamma amplitude values 

cross 331 electrodes during the presentation of 438 sentences). 

ecause the data are already centered, PCA is just a singular value 

ecomposition of the data matrix: 

 = U Y S Y V 

T 
Y (17) 

here U Y is a T × N orthogonal matrix where the columns repre- 

ent the N principal components across time, and V T 
Y 

is a N × N

atrix where the rows represent the spatial support of each prin- 

ipal component. S Y is a diagonal N × N matrix with ordered diag- 

nal elements s 1 , s 2 , . . . , s N . The percent of the variance explained

y a component i can be calculated as: 

00 × s 2 
i ∑ N 

j=1 s 
2 
j 

(18) 

Note that the “percent explained variance” in PCA (Supplemen- 

ary Figure S1) is not comparable to the “total explained variance”

n the regression analysis ( Section 3.8 and Fig. 1 C), because the 

CA explained variance is computed on the training data, while 

he regression explained variance is computed on held-out testing 

ata. 

.13. Single subject analysis 

For Supplementary Figure S2, the entire pipeline was run for a 

ingle subject, SL04. In this analysis, the Y matrix defined above of 

-scored high gamma amplitude values across electrodes and time- 

oints was restricted to only the speech-responsive STG electrodes 

rom SL04 (45 electrodes). This subject was chosen based on the 

arge number of speech-responsive electrodes over STG, and their 

overage of both middle and posterior STG. Surface plots in Figure 

2 use the subject’s cortical surface, without warping to the aver- 

ge brain. 

. Results 

The fits to our integrative reduced rank regression model re- 

eal that high gamma responses to speech stimuli across hundreds 

f electrodes can be parsimoniously represented as a combination 

f a few low-dimensional latent state responses to specific fea- 

ure events in the stimulus. Two latent states in particular, cor- 

esponding to the sentence onset and peak rate features, reflect 

 large proportion of the explained variance in the model, and 

heir dynamic properties suggest specific computational roles in 

he speech perception network. 

.1. iRRR outperforms models that treat each electrode individually, 

nd sentence onset and peak rate capture more of the variance than 

honetic features 

Fig. 1 C–E compare the three different fitting frameworks: OLS, 

idge regression, and iRRR. Because the regression framework is 

he same for all three, the fitted models have very similar total 

xplained variance (r 2 computed over all electrodes, Fig. 1 C). All of 

he models have a proportion of explained variance of about 0.2, 
7 
hich can be partially explained by the fact that each stimulus was 

resented only once, so the data contains both stimulus-related 

ctivity and trial-specific noise. In addition, this is an aggregate 

ver all speech-responsive electrodes: some electrodes are more 

timulus-driven than others (see Fig. 1 A). Comparing the three fit- 

ing frameworks, iRRR by design achieves a much smaller nuclear 

orm ( Fig. 1 D), which results in solutions that can be described 

ith 94% fewer parameters than OLS and ridge regression ( Fig. 1 E). 

he fact that the iRRR model captures as much information as the 

ingle-electrode models using far fewer parameters suggests that 

ubstantial feature-related information is shared across electrodes. 

Fig. 1 F shows the unique explained variance of each of the fea- 

ures in the iRRR fit: sentence onset and peak rate explain a larger 

ercentage of the full model variance than each of the phonetic 

eatures ( p < 0.0 0 05 for all comparisons using a two-sided paired t -

est after Bonferroni correction). This suggests that these two tim- 

ng features reflect a substantial amount of the speech-induced re- 

ponse across STG. 

When the features are grouped into timing (sentence onset and 

eak rate) and phonetic (all other features) groups, both groups ex- 

lain a large proportion of the variance (15% and 22%, respectively). 

omparing the groups, however, the phonetic features explain 

ore of the unique variance than the timing features ( p < 0.0 0 05,

wo-sided paired t -test). This could be surprising in light of the in- 

ividual feature comparisons: while timing features capture more 

xplained variance than phonetic features when compared individ- 

ally, when combined they capture less explained variance. This is 

ikely due to (1) correlations between individual phonetic features 

hat lead to lower individual unique explained variance and (2) 

he fact that more electrodes respond to sentence onset and peak 

ate than individual phonetic features ( Oganian and Chang, 2019 ), 

eaning that sentence onset and peak rate have more widespread 

patial support than the more spatially localized phonetic features. 

his more widespread spatial support means that the iRRR model 

s better able to consolidate the activity patterns across multiple 

lectrodes, i.e. capture the latent dynamics, for the sentence onset 

nd peak rate features than for the phonetic features. Accordingly, 

he following two sections describe the latent state representations 

or the sentence onset and peak rate features in more detail. 

.2. The model fit captures known response differences between pSTG 

nd mSTG 

In Hamilton and colleagues’ ( Hamilton et al., 2018 ) unsuper- 

ised model, the “onset” cluster of electrodes was found to occur 

rimarily over the posterior portion of STG (pSTG). This observa- 

ion led them to propose that pSTG may play a role in detecting 

emporal landmarks at the sentence and phrase level, because the 

hort-latency, short-duration responses to sentence onsets in pSTG 

ould be able to encode the event time with high temporal res- 

lution. This idea fits well within a long history of evidence that 

timulus responses in mSTG have longer latencies and longer dura- 

ions than those in pSTG ( Hamilton et al., 2021 ; Jasmin et al., 2019 ;

i et al., 2019 ). Here, the model fits recapitulate these known dif- 

erences between mSTG and pSTG. 

As discussed above ( Eq. (6) ), the feature response matrices that 

re fitted by the iRRR model can be decomposed into a small 

umber of components across time (“time components”, columns 

f U f ), components across electrodes (“spatial components”, rows 

f V T 
f 

), and corresponding weights (values on the diagonal of S f ). 

ig. 2 shows the Sentence Onset and Peak Rate fitted feature ma- 

rices decomposed in this way (Since U f and V f are orthonormal, 

heir columns are unit vectors: as a result, their units are arbitrary 

nd can be best interpreted in relative terms). 

Fig. 2 A and B show the time components scaled by their cor- 

esponding weights, and Fig. 2 C and D show the first two spa- 
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Fig. 2. The model fit captures known response differences between pSTG and mSTG. A and B: Time components for the sentence onset and peak rate response matrices, 

scaled by their singular value (all panels of this figure use the fit from the first cross-validation fold). C: The first two spatial components (across electrodes) for sentence 

onset. E: The electrode responses to sentence onset events (rows of the sentence onset response matrix), colored by the first (left) or second (right) peak rate spatial 

component. The first spatial component for sentence onset shows that electrodes with large sentence onset responses (red lines in the left plot of E) tend to be in posterior 

STG (red circles in the left plot of C). D and F: (like C and E, but for peak rate). The second spatial component divides electrodes into fast and slow peak rate responses (red 

and blue lines in the right plot of F), which tend to occur over pSTG and mSTG, respectively (red and blue circles in the right plot of D). 
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ial components. To illustrate how the low dimensional compo- 

ents map back to the response functions for individual electrodes, 

ig. 2 E and F show the individual electrode response functions 

rows of ̂ B f ), colored by the spatial component from Fig. 2 C and 

. 

Looking at the left panel of Fig. 2 C and 2 E, we can see that elec-

rodes that have large values in the first spatial component (red 

ircles in Fig. 2 C, left) have relatively larger overall responses to 

entence onset events (red lines in Fig. 2 E, left). These electrodes 

ccur primarily over pSTG (i.e. posterior to the lateral exit point 

f the transverse temporal sulcus), which is in line with previous 

ndings ( Hamilton et al., 2018 ). 

For peak rate, the first component plays the same role: elec- 

rodes that have larger values in the first spatial component 

 Fig. 2 D, left) have relatively larger overall responses to peak rate 

vents ( Fig. 2 F, left). Electrodes with large peak rate responses are 

ot limited to pSTG like sentence onset electrodes: rather, they are 

istributed over all of STG. In other words, the encoding of peak 

ate in STG is not focal but is distributed over centimeters of cor- 

ex, suggesting a representation on a large spatial scale. Interest- 

ngly, the second component does appear to have a spatial distinc- 

ion between pSTG and mSTG: electrodes with positive values for 

he second component tend to occur over pSTG, while electrodes 

ith negative values for the second component tend to occur over 
e

8

STG (i.e. anterior to the lateral exit point of the transverse tem- 

oral sulcus, Fig. 2 D, right). The negative and positive values distin- 

uish response functions by their temporal response profile: pos- 

tive values correspond to electrodes that have an early peak rate 

esponse, while negative values correspond to electrodes that have 

 late peak rate response ( Fig. 2 F, right). This suggests that peak 

ate responses over pSTG are faster than peak rate responses over 

STG. 

.3. Feature latent states have rotational dynamics that capture 

ontinuous relative timing information 

To show how the latent states behave during the presentation 

f a stimulus, we used the fitted model to predict the dynamics in 

ach latent state during the presentation of the sentence “They’ve 

ever met, you know” ( Fig. 3 , see Section 3.9 for the calculation of 

he predicted responses). 

The sentence onset latent space has 5 dimensions and the peak 

ate latent space has 6 dimensions. While the sentence onset fea- 

ure only occurs once at the beginning of the stimulus, evoking 

 single response across the sentence onset dimensions, the peak 

ate feature occurs several times, and the dynamics of the peak 

ate latent state do not go back to baseline in between peak rate 

vents ( Fig. 3 B and C). Plotting the top three dimensions, which 
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Fig. 3. Feature latent states have rotational dynamics that capture continuous relative timing information. A: Acoustic waveform of the stimulus. Solid and dashed vertical 

lines indicate the timing of the sentence onset and peak rate events, respectively. Colors along the x-axis are used to indicate time in parts d -G. B, C: Predicted latent states 

for the sentence onset and peak rate features corresponding to the given stimulus. D, E: Top three dimensions of the predicted sentence onset and peak rate latent states 

(the top three dimensions capture 98.7% and 98.8% of the variance in the sentence onset and peak rate coefficient matrices, respectively). F, G: Projection of the predicted 

sentence onset and peak rate latent states onto the plane of fastest rotation (identified using jPCA). The displayed jPCA projections capture 31.8% and 20.3% of the variance 

in the sentence onset and peak rate coefficient matrices, respectively. All panels of this figure use the fit from the first cross-validation fold. 
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apture more than 98% of the variance in the coefficient matrices 

 ̂

 B f ), shows cyclical dynamics for both sentence onset and peak 

ate ( Fig. 3 D and E): the sentence onset state rotates once at the

eginning of the sentence, and the peak rate latent state rotates 

–4 times, once after each peak rate event. 

To quantify this effect, we used jPCA ( Churchland et al., 2012 ) 

o identify the most rotational 2 dimensional subspace within the 

op three components of ˆ B f . These planes capture 31.8% and 20.3% 

f the variance in the sentence onset and peak rate coefficient ma- 

rices, respectively, and they highlight the cyclical dynamics that 

ere visible in the top 3 dimensions ( Fig. 3 F and G). 

Note that seeing cyclical dynamics in the latent states is not 

ecessarily surprising: the coefficient matrices ˆ B f describe smooth 

ultivariate evoked responses that will tend to start and end at 

he same baseline. Indeed, the cyclical dynamics may reflect a 

o-called “horseshoe effect” arising from short- and long-latency 

esponses to the same events ( Elsayed and Cunningham, 2017 ; 

ichaels et al., 2016 ), as is evident in Fig. 2 F. Our data and model

re also not intended to distinguish between a dynamical code ver- 

us a representational code, which is an ongoing controversy in 

he field: a representational code explains neural activity with be- 

avioral or external factors, while a dynamical code explains neu- 

al activity as a function of previous neural activity. While these 

wo frameworks are not mutually exclusive, neural systems may 

e better explained by one or the other in different situations 

 Michaels et al., 2016 ; Russo et al., 2018 ; Vyas et al., 2020 ). 

Here, we highlight the rotational dynamics to motivate a geo- 

etrical argument for the role of the peak rate responses in down- 

tream processing. We will make the case (see Section 5 ) that the 

tructure of the peak rate responses enables them to act as a tem- 

oral context signal against which other features are organized. In 

rder for the peak rate latent state to play this role, the trajectories 

hould be sufficiently spread out in latent space to enable down- 

tream areas to decode the time relative to the most recent peak 
p

9 
ate event using just the instantaneous latent state. We investigate 

hether this is true in the next section. 

.4. Latent states from the model can be used to decode time relative 

o feature events 

So far, we have described how the model is fit using known 

eature event times, and how the fitted model can be used to 

redict responses given new feature events. We also wanted to 

now whether the model fit could be used to decode the timing 

f events, which would indicate that sufficient information is con- 

ained in the feature responses for downstream areas to use them 

s temporal context signals. 

The set of spatial components for each feature defines a 

eature-specific subspace of the overall electrode space. The projec- 

ion of the observed high gamma time series onto this subspace is 

n approximation of the feature latent state (note that it is not ex- 

ct, because the different feature subspaces are not orthogonal to 

ach other). We asked whether this latent projection time series 

ould be used to decode the time since the most recent feature 

vent. 

Fig. 4 shows the result of this analysis (details of the methods 

re in Section 3.11 ): a perceptron model was trained to decode the 

ime since the most recent feature event up to 750 ms, given ei- 

her the activity on the full set of electrodes or the projection of 

he electrode activity onto the corresponding feature subspace. The 

ecoder for sentence onset performs slightly better when using 

ll electrodes, which may be due to the large proportion of the 

verall activity that is time-locked to sentence onsets (see Sup- 

lementary Figure S1). For all other features, however, decoder 

erformance using the reduced-dimensional latent subspaces per- 

orms even better than decoding using the full dimensional activ- 

ty across electrodes (paired t -test over 10 cross validation folds, 

 < 0.05 with Bonferroni correction across 12 features). Because no 
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Fig. 4. Latent states from the model can be used to decode time relative to feature 

events. Performance of a perceptron model trained to decode the time relative to 

the most recent feature event, for each feature. The models were trained either us- 

ing the full high-dimensional set of high gamma responses across electrodes (blue 

bars) or using the projection of those responses onto the subspaces spanned by the 

feature latent states (orange bars). Performance is quantified using the testing set 
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nformation is gained in the projection operation, this is an indica- 

ion that projecting onto the latent subspaces increases the signal 

o noise ratio, i.e. removes activity that is irrelevant to decoding 

elative time. 

. Discussion 

We have shown that a low dimensional regression model, iRRR, 

erforms as well as classic models in representing high-gamma re- 

ponses to timing and phonetic features of auditory stimuli, while 

sing far fewer parameters. It accomplishes this compression by 

apturing similarities in feature responses that are shared across 

lectrodes, which enables a low-dimensional latent state interpre- 

ation of the dynamics of high gamma responses to stimulus fea- 

ures. The sentence onset and peak rate features capture more 

nique variance than the other (phonetic) features, their responses 

re spread over both mSTG and pSTG, and their latent states show 

otational dynamics that repeat after each event. Based on the ge- 

metry, duration, and spatial extent of the latent dynamics, we 

ake the case that the sentence onset response could act as an ini- 

ialization signal to kick the network into a speech-encoding state, 

hile the peak rate response could provide a widespread temporal 

ontext signal that could be used to compose word-level represen- 

ations from low-level acoustic and phonetic features. 

The large magnitude of sentence onset responses in ECoG high 

amma responses has been reported before ( Hamilton et al., 2018 ): 

ere, we confirm their large contribution to STG responses both us- 

ng our iRRR model ( Fig. 1 ) and using PCA (Supplementary Figure 

1). Importantly, the latent dynamics related to sentence onset last 

bout 600 ms ( Fig. 2 a). Since sentences in English often last longer

han 600 ms (e.g. the sentences in the TIMIT corpus used here 

anged from 900 ms to 2.6 s), these onset-related dynamics are 

nsuited to encode temporal context on an entire sentence level. 

urthermore, sentence boundaries in continuous natural speech are 

arely indicated with pauses or silence ( Yoon et al., 2007 ), mean- 

ng that neural responses to acoustic onsets are unlikely to code 

entence transitions. Rather, the latent dynamics in response to 

nsets may serve as a non-speech specific temporal indicator of 

he transition from silence to sound, occurring during perception 

f any auditory stimulus. During speech perception, the speech- 

elated cortical networks could use this non-specific event as a re- 

et or initialization signal. The idea that a large transient in the la- 

ent state could act to transition a network between states is also 

hought to occur in the motor system, where condition-invariant 

ovement onset responses in the latent state mark the transition 

rom motor preparation to motor behavior ( Kaufman et al., 2016 ). 
10 
With regard to the peak rate dynamics, we propose that the 

omputational role of the peak rate feature response is to keep 

rack of word-level temporal context using a clock-like represen- 

ation. The idea that structured latent state dynamics can act as 

locks has been proposed in several different cognitive domains, 

ost commonly in the motor system ( Buonomano and Laje, 2010 ; 

hurchland et al., 2012 ; Remington et al., 2018 ; Vyas et al., 2020 )

c.f. ( Lebedev et al., 2020 )) and in temporal interval estimation and 

erception ( Cannon and Patel, 2021 ; Gámez et al., 2019 ; Mauk and

uonomano, 2004 ; Wang et al., 2018 ). In the motor system, Russo 

nd colleagues ( Russo et al., 2020 ) describe population dynam- 

cs in primary motor cortex (M1) and supplementary motor area 

SMA) while a monkey performed a cyclic motor action. The popu- 

ation dynamics in M1 were rotational, exhibiting one rotation for 

ach motor cycle, while the dynamics in SMA were shaped like a 

piral, where 2-dimensional rotations for each motor cycle were 

ranslated along a third dimension. They proposed that this struc- 

ure would be well-suited to keep track of progress through multi- 

ycle actions: each rotation encodes a single action, and translation 

long the third dimension encodes progress through the motor se- 

uence. The rotational component of SMA population trajectories 

as also been suggested to operate as a time-keeping signal in au- 

itory beat perception, where rotations through latent space keep 

rack of the interval between beats ( Cannon and Patel, 2021 ). 

The peak rate latent state in STG could similarly be playing a 

omputational role in auditory speech perception: the rotations in 

he peak rate subspace could serve to keep track of the time rel- 

tive to the peak rate event, chunking time into intervals start- 

ng at the onset of a vowel. These intervals could then be used 

y downstream processing to give temporal context to the fine- 

rained phonetic feature information conveyed by other subpopu- 

ations. In other words, the rotational peak rate latent state could 

rovide a temporal scaffolding on which individual phonetic fea- 

ures can be organized. Fig. 5 illustrates this idea: when hearing 

he sentence “It had gone like clockwork,” the peak rate latent 

tate partitions the sentence into four rotations, each one capturing 

he time since the most recent peak rate event. Downstream pro- 

essing streams could combine this information with the phonetic 

eature information to put the phonetic feature events into their 

ocal context, here at the level of words or small sets of words 

 Fig. 5 C). Peak rate is in a unique position to play this role: it is the

nly feature that repeats within the linguistic structure of speech 

t the level of syllables/words, without reference to the linguistic 

ontents. In addition, the peak rate responses are distributed over 

entimeters of cortex ( Fig. 2 D) so the temporal context information 

ould be widely available to local and downstream processing. 

In order for the peak rate latent state to play this role, it should 

ave a couple of properties. First, there should be a mapping from 

oints in state space to different relative times. As we showed in 

ig. 3 , the rotational dynamics cause different relative times to be 

ncoded in different locations of the latent space. Second, the tra- 

ectories in latent space should be consistent enough to support 

ecoding of relative time in the presence of noise. In Fig. 4 , we

howed that the projections of the neural activity onto the sub- 

paces spanned by the feature latent states support decoding of 

he time relative to the most recent feature event. Note that while 

he latent state projections support decoding better than decod- 

ng from the full high-dimensional signal, the actual performance 

or peak rate is somewhat low ( ∼50%). A possible reason for this 

ould be that some peak rate events are more effective at driving 

he latent state than others (even after accounting for peak rate 

agnitude, as the model does), resulting in inconsistent decoding 

f the time since the most recent peak rate event. 

Beyond the two-dimensional rotational dynamics, the peak rate 

atent trajectory forms a spiral in 3 dimensions ( Fig. 5 B), sim- 

lar to population trajectories in SMA during motor sequences 
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Fig. 5. Peak rate rotational latent states could provide a temporal scaffolding on which individual acoustic features can be organized. A: The acoustic waveform for the 

stimulus “It had gone like clockwork”. Solid vertical lines indicate the times of peak rate events, and colored dashed vertical lines indicate the times of phonetic feature 

events. Colors are used to indicate time in all panels. B: The predicted peak rate latent state follows a spiral trajectory in the top 3 dimensions. C: Projected onto the plane 

of greatest rotation (jPC1 and 2), the predicted peak rate latent state divides the sentence into four intervals, each consisting of a rotation through state space that captures 

the time since the peak rate event occurred. Downstream processing could combine the relative time information encoded in the peak rate subspace (grey traces) with the 

feature identities encoded in the feature subspaces (colored points) to compose higher-order representations of words or small groups of words. Text in panels B and C 

indicates the approximate timing of the words in the stimulus. 
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 Russo et al., 2020 ). This suggests that the peak rate subpopulation 

ay additionally encode the ordering of the word-level intervals 

ithin a larger linguistic context, such as the phrase level. 

Furthermore, the representation of these intervals does not 

equire top-down predictive coding ( Hovsepyan et al., 2020 ; 

ewis and Bastiaansen, 2015 ; Park et al., 2015 ; Pefkou et al., 

017 ) or entrainment of ongoing oscillations ( Canolty, 2007 ; 

hitza, 2011 ; Giraud and Poeppel, 2012 ; Hovsepyan et al., 2020 ; 

artin, 2020 ; Pittman-Polletta et al., 2020 ): in our model they 

re implemented via event-related potentials triggered by discrete 

coustic (peak rate) events. While top-down and oscillatory mech- 

nisms may play important roles in speech perception, our model 

emonstrates that some speech segmentation and context process- 

ng can be performed without them. 

The events that we focus on for speech segmentation are peak 

ate events, moments of sharp increases in the acoustic envelope. 

he peak rate events in the model are coded with their magni- 

ude (the slope of the rise in the acoustic envelope), which allows 

he model dynamics to change proportionally to the size of the 

vent. This is important because peak rate events, also called au- 

itory onset edges ( Biermann and Heil, 20 0 0 ; Doelling et al., 2014 ;

eil and Neubauer, 2001 ), differ in magnitude based on the stress 

evel of the corresponding syllable ( Oganian and Chang, 2019 ). This 

eans that the dynamics triggered by peak rate events are sen- 

itive to prosodic structure, both stressed syllables within words 

nd stressed words within phrases. To investigate this further, it 

ould be helpful to use a speech stimulus corpus with more com- 

lex prosodic structure than the TIMIT corpus used here. 

In summary, our model (iRRR) represents STG high gamma re- 

ponses to natural speech stimuli as a superposition of responses 

o individual phonetic and timing features, where each feature has 

 corresponding low-dimensional latent state that is shared across 

lectrodes. It performs as well as single electrode models while us- 

ng far fewer parameters, indicating that substantial feature-related 

nformation is shared across electrodes. Sentence onset and peak 

ate events, features representing timing at the sentence and syl- 

able scales, capture more unique variance than phonetic features. 

he latent dynamics for sentence onset and peak rate contain in- 

ormation about the time since the most recent (sentence onset 

r peak rate) event, and the information is distributed across cen- 

imeters of cortex. We make the case that for peak rate, this rela- 

ive timing information could play a role in composing word-level 
11 
epresentations from low-level acoustic features, without requiring 

scillatory or top-down mechanisms. 
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Custom Python code to perform the iRRR fits is available on- 

ine ( https://github.com/emilyps14/iRRR _ python ), which is a port 

f the Matlab implementation by the original authors ( https:// 

ithub.com/reagan0323/iRRR , ( Li et al., 2019 )). Python code for 

he analysis pipeline described above is also available ( https: 

/github.com/emilyps14/mtrf _ python ). We thank Antin and col- 
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